1. 题⽬链接:174.地下城游戏
2. 题⽬描述:
3. 解法(动态规划):
算法思路:
1. 状态表⽰:
这道题如果我们定义成:从起点开始,到达[i, j] 位置的时候,所需的最低初始健康点数。 那么我们分析状态转移的时候会有⼀个问题:
那就是我们当前的健康点数还会受到后⾯的路径的影 响。也就是从上往下的状态转移不能很好地解决问题。
这个时候我们要换⼀种状态表⽰:从[i, j] 位置出发,到达终点时所需要的最低初始健康点 数。这样我们在分析状态转移的时候,后续的最佳状态就已经知晓。
综上所述,定义状态表⽰为: dp[i][j] 表⽰:从[i, j] 位置出发,到达终点时所需的最低初始健康点数。
2. 状态转移⽅程:
对于dp[i][j] ,从[i, j] 位置出发,下⼀步会有两种选择(为了⽅便理解,设dp[i] [j] 的最终答案是x ):
i. ⾛到右边,然后⾛向终点 那么我们在[i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于右边位 置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i][j + 1] 。
通过移项可得: x >= dp[i][j + 1] - dungeon[i][j] 。因为我们要的是最⼩ 值,因此这种情况下的 x = dp[i][j + 1] - dungeon[i][j] ;
ii. ⾛到下边,然后⾛向终点 那么我们在[i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于下边位 置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i + 1][j] 。 通过移项可得: x >= dp[i + 1][j] - dungeon[i][j] 。
因为我们要的是最⼩ 值,因此这种情况下的 x = dp[i + 1][j] - dungeon[i][j] ;
综上所述,我们需要的是两种情况下的最⼩值,因此可得状态转移⽅程为: dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j] 但是,如果当前位置的dungeon[i][j] 是⼀个⽐较⼤的正数的话, dp[i][j] 的值可能变 成0 或者负数。也就是最低点数会⼩于1 ,那么骑⼠就会死亡。
因此我们求出来的dp[i] [j] 如果⼩于等于0 的话,说明此时的最低初始值应该为1 。处理这种情况仅需让dp[i] [j] 与1 取⼀个最⼤值即可: dp[i][j] = max(1, dp[i][j])
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。 在本题中,在dp 表最后⾯添加⼀⾏,并且添加⼀列后,所有的值都先初始化为⽆穷⼤,然后让dp[m][n - 1] = dp[m - 1][n] = 1 即可。
4. 填表顺序:
根据「状态转移⽅程」,我们需要「从下往上填每⼀⾏」,「每⼀⾏从右往左」。
5. 返回值:
根据「状态表⽰」,我们需要返回dp[0][0] 的值。
C++算法代码:
class Solution
{
public:
int calculateMinimumHP(vector<vector<int>>& dungeon)
{
int m=dungeon.size(),n=dungeon[0].size();
//建表
//表表示该点到终点所需的最小步数
vector<vector<int>>dp(m+1,vector<int>(n+1,INT_MAX));
//初始化
dp[m][n-1]=1;
//填表
for(int i=m-1;i>=0;i--)
{
for(int j=n-1;j>=0;j--)
{
//找出到终点所需的最小步数
dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j];
//若到终点所需的最小步数为负数,则调整为最小值1
dp[i][j]=max(1,dp[i][j]);
}
}
return dp[0][0];
}
};
Java算法代码:
class Solution
{
public int calculateMinimumHP(int[][] d)
{
// 1. 创建 dp 表
// 2. 初始化
// 3. 填表
// 4. 返回值
int m = d.length, n = d[0].length;
int[][] dp = new int[m + 1][n + 1];
for (int j = 0; j <= n; j++) dp[m][j] = Integer.MAX_VALUE;
for (int i = 0; i <= m; i++) dp[i][n] = Integer.MAX_VALUE;
dp[m][n - 1] = dp[m - 1][n] = 1;
for (int i = m - 1; i >= 0; i--)
for (int j = n - 1; j >= 0; j--)
{
dp[i][j] = Math.min(dp[i][j + 1], dp[i + 1][j]) - d[i][j];
dp[i][j] = Math.max(dp[i][j], 1);
}
return dp[0][0];
}
}