基于CNN对DDoS攻击检测实现

基于CNN对DDoS攻击检测实现

在现代网络中,DDoS(分布式拒绝服务)攻击已经成为一种严重的安全威胁,攻击者通过大量的恶意流量将目标服务器或网络资源压垮,导致正常用户无法访问。传统的DDoS攻击检测方法往往依赖于规则匹配或统计学方法,但这些方法在处理复杂和大规模的流量时往往效率低下。近年来,深度学习方法,尤其是卷积神经网络(CNN),已经被广泛应用于网络流量分析和DDoS攻击检测,凭借其强大的特征自动学习能力,CNN能够在复杂数据中发现潜在的攻击模式。

1. 数据预处理

首先,我们需要获取适合DDoS检测的网络流量数据集。常用的数据集有CICIDS 2017(Canadian Institute for Cybersecurity Intrusion Detection System 2017),它包含了多种类型的网络攻击流量,包括DDoS攻击。我们将使用这个数据集进行训练和测试。

1.1 数据集加载和处理

在加载数据之前,需要对原始数据进行预处理。具体步骤包括:

  • 数据清洗:删除无关的列,处理缺失值。
  • 特征提取:从原始数据中提取有意义的特征,如包大小、连接时间、传输协议等。
  • 标签编码:将正常流量和DDoS攻击流量标记为不同的类别。

1.2 数据规范化

由于网络流量特征的量纲不同,需要对数据进行规范化处理,使得每个特征在同一尺度上。常用的规范化方法是标准化或Min-Max缩放。

import pandas as pd
from sklearn.preprocessing import StandardScaler

# 读取数据集
data = pd.read_csv('network_traffic_data.csv')

# 选择需要的特征列
features = data[['feature1', 'feature2', 'feature3', ...]]
labels = data['label']

# 数据标准化
scaler = StandardScaler()
features_scaled = scaler.fit_transform(features)

1.3 数据集划分

数据集需要划分为训练集和测试集,通常的划分比例为70%训练集和30%测试集,或者80%训练集和20%测试集。

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(features_scaled, labels, test_size=
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值