你还在为数据枯燥而发愁?不如让我们用机器学习来和DDoS攻击“打个招呼”!
欢迎来到一场别开生面的数据科学冒险!你是否曾经面对一堆毫无生气的数据表格,感到头疼不已?是否在盯着屏幕苦苦寻找攻击模式时,觉得自己仿佛变成了一个被困在数据迷宫里的“网络侦探”?别担心!今天,我们要带你进入一个既充满技术含量又不乏趣味的世界——DDoS攻击数据分析与机器学习模型的终极指南。在这片神秘的网络战场上,我们不仅要识破每一个DDoS攻击的阴谋,还要用机器学习模型来“以智取胜”,确保你的数据科学之旅既有干货又有乐趣!
Step 1:数据合并——让散落的“数据英雄”集结
在数据科学的世界里,每一份数据都像是隐士高手,分散在各个角落。而我们的任务就是要把这些“数据英雄”召集到一起,形成一支强大的分析团队。在这个案例中,我们面对的是来自加拿大新不伦瑞克大学的网络情报与网络安全中心(CIC)的CICDDoS2019数据集——这个数据集记录了各种最新的DDoS攻击,就像一本充满悬念的侦探小说,等待我们去解读。
我们的第一个挑战就是将这些数据文件整合起来。想象一下,你要把来自不同来源的英雄集结成一支无敌的队伍,过程中还得筛选掉那些“经验不足”的队员(行数据)。我们通过随机选择跳过部分行数据,来确保数据的多样性和代表性。
# 初始化一个空的DataFrame来合并所有数据
all_data = pd.DataFrame()
# 循环读取每个文件,并将它们合并到all_data DataFrame
for file in files:
# 随机生成需要跳过的行号
skip_rows = np.random.choice(range(1, total_rows), replace=False,
size=max(0, total_rows - np.random.randint(3000, 15001)))
temp_df = pd.read_csv(file_path, skiprows=skip_rows)
temp_df['Attack Type'] = file.replace('.csv', '')
all_data = pd.concat([all_data, temp_df], ignore_index=True)
这段代码就像是一个魔法阵,悄无声息地将所有数据整合在一起,准备迎接后续的“战斗”。而接下来的步骤,就是让这些数据焕然一新,摆脱一切“噪音”。
Step 2:数据清理——为战斗准备一支“全副武装”的队伍
数据清理就像是一场盛大的宴会筹备,你必须确保每个细节都无懈可击。我们要做的第一件事,就是清理这些数据的外观,去除那些不必要的空白、填补缺失的值,确保每一个数据点都在最佳状态。
# 清理所有列名,去除前后的空格
data.columns = data.columns.str.strip()
data = data.replace([np.inf, -np.inf], np.nan)
data.fillna(data.median(numeric_only=True), inplace=True)
这些简单的操作就像是为数据“整装待发”,去除那些影响分析的“负担”,确保每个数据点都能够准确反映它的真实含义。接下来,我们要开始揭示数据中的“暗流涌动”。
Step 3:数据探索——发现隐藏在数据中的秘密
数据探索的阶段就像是侦探故事的高潮部分,你终于要揭开那些隐藏的真相了。我们会通过各种图表和统计分析,发现数据中那些不为人知的规律。
流量分布——谁在午夜时分发动攻击?
首先,我们会看看不同时间段的流量分布。你会发现,DDoS攻击者似乎喜欢在某些特定的时间点发动攻击,就像夜行侠一样,喜欢在黑暗中行动。
traffic_distribution = data['Hour'].value_counts().sort_index()
sns.countplot(x='Hour', data=data)
plt.title('流量分布 - 按小时')
plt.xlabel('小时')
plt.ylabel('流量计数')
plt.show()
攻击类型分析——DDoS攻击的幕后黑手到底是谁?
接下来,我们用饼图来分析不同攻击类型的分布情况。这个图表就像是一份DDoS攻击的“嫌疑人名单”,让我们一眼看清哪个攻击类型最猖獗。
data['Attack Type'].value_counts().plot(kind='pie', autopct='%1.1f%%')
plt.title('攻击类型分布')
plt.show()
这些分析不仅让我们对数据有了初步的了解,还为后续的模型训练提供了宝贵的线索。
Step 4:特征工程与模型训练——打造网络安全的“秘密武器”
现在,我们已经准备好进入数据科学的核心部分:特征工程与模型训练。我们会使用逻辑回归、随机森林和梯度提升决策树这三位“战士”来训练模型,最终找出最适合对抗DDoS攻击的“秘密武器”。
逻辑回归:简单直接的线性思路
逻辑回归是我们的第一个模型,就像是网络安全中的“直拳”,虽然简单直接,但非常有效。它能快速识别数据中的线性关系,让我们迅速了解数据的全貌。
lr_cv_model = LogisticRegressionCV(cv=5, max_iter=1000, class_weight='balanced',
solver='liblinear', scoring='accuracy', random_state=42)
lr_cv_model.fit(X_train_processed, y_train)
随机森林:来自自然界的强大力量
接下来登场的是随机森林,这是一种集成学习方法,结合了多棵决策树的智慧。它像是一个团队作战,通过集体决策来提高模型的稳定性和预测准确性。
pipeline = Pipeline([
('scaler', StandardScaler(with_mean=False)),
('feature_selection', SelectFromModel(RandomForestClassifier(n_estimators=100, random_state=42,