0-1背包问题(动态规划)

问题描述:有n个物品和一个容量为C的背包。每个物品i都有重量s[i]和价值v[i],其中1 ≤ i ≤ n。需要选择一些物品放入背包,使得放入的物品总重量不超过背包容量C,且总价值最大。

一、思路讲解

0-1背包的特点:每种物品只有一件,可以选择放入不放入

0-1背包问题的状态分析如下:

状态:dp[i][j]表示前i个物品放入容量为j的背包中所能获得的最大价值。

状态转移方程:

  •  当 j < s[i] 时,即当前物品的重量大于背包容量,无法放入背包,此时 dp[i][j] = dp[i-1][j],即等于前 i-1 个物品放入背包容量为的最大价值。
  • 当 j >= s[i] 时,即当前物品的重量小于等于背包容量,可以选择放入或不放入背包: 
  1. 如果选择放入当前物品,则最大价值为dp[i-1][j-s[i]] + v[i],即前 i-1 个物品放入容量为j-s[i]的背包中的最大价值加上当前物品的价值。
  2. 如果选择不放入当前物品,则最大价值为dp[i-1][j],即前 i-1 个物品放入容量为j的背包中的最大价值。
  •   综合考虑放入和不放入的情况,取两者中的最大值作为dp[i][j]的值。

初始状态:
- dp[0][j] = 0,表示没有物品可选时,背包容量为 j 时的最大价值为0。
- dp[i][0] = 0,表示背包容量为0时,无论有多少物品,最大价值都为0。

根据以上状态分析,可以正确计算0-1背包问题的最大价值。

01背包基本思路

  • 现阶段:定义dp[i][j]表示前i个物品放入容量为j的背包中所能获得的最大价值。根据现阶段的定义,可以使用动态规划来解决问题。
  • 状态转移方程:对于每个物品i,可以选择放入背包或者不放入背包。如果选择放入第i个物品,则最大价值为dp[i - 1][j - s[i]] + v[i];如果选择不放入第i个物品,则最大价值为dp[i - 1][j]。因此,状态转移方程为dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - s[i]] + v[i])。
  • 边界条件:初始状态为dp[0][j] = 0,表示没有物品可选时,背包容量为j时的最大价值为0;dp[i][0] = 0,表示背包容量为0时,无论有多少物品,最大价值都为0。

二、图示

dp(n,j):当前背包容量为 j,现有n件物品可以放入,所能得到的最大值

三、伪代码

代码如下(示例):

Input: n (物品数量), C (背包容量), s[] (每个物品的重量), v[] (每个物品的价值)
Output: 最大价值

// 初始化动态规划数组
for i from 0 to n:
    dp[i][0] = 0
for j from 0 to C:
    dp[0][j] = 0

// 动态规划计算最大价值
for i from 1 to n:
    for j from 1 to C:
        if j < s[i]:
            dp[i][j] = dp[i-1][j]
        else:
            dp[i][j] = max(dp[i-1][j], dp[i-1][j - s[i]] + v[i])

return dp[n][C]  // 返回最大价值

四、代码

代码如下(示例):

#include <iostream>
#include <vector>
using namespace std;

int KnapSack(const vector<int> &s, const vector<int> &v, int n, int C) {
    vector<vector<int> > dp(n + 1, vector<int>(C + 1, 0));
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= C; j++) {
            if (j < s[i]) {
                dp[i][j] = dp[i - 1][j];
            } else {
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - s[i]] + v[i]);
            }
        }
    }
    return dp[n][C];
}

void print(const vector<vector<int> > &dp, int n, int C) {
    for (int i = 0; i <= n; i++) {
        for (int j = 0; j <= C; j++) {
            cout << dp[i][j] << " ";
        }
        cout << endl;
    }
}

int main() {
    int n, C;
    cin >> n >> C;
    vector<int> s(n + 1), v(n + 1);
    for (int i = 1; i <= n; i++) {
        cin >> s[i] >> v[i];
    }
    int result = KnapSack(s, v, n, C);
    cout << "最大价值: " << result << endl;
    return 0;
}

 

第一行包含两个整数n和C,分别表示物品的数量和背包的容量。 接下来n行,每行包含两个整数,分别表示第i个物品的重量和价值。

总结

  1. 时间复杂度:动态规划解决0-1背包问题的时间复杂度为O(n*C),其中n为物品数量,C为背包容量。

  2. 空间优化:可以对动态规划数组进行空间优化,只使用一维数组来存储状态,减少空间复杂度。

  3. 应用领域:0-1背包问题是一个经典的优化问题,在实际应用中经常用到,例如资源分配、项目投资等场景。

  • 31
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值