动态规划0-1背包问题。(算法设计与分析详解)

目录

什么是0-1背包:

实例讲解 

代码思想:

 步骤实现详解:

代码实现:


什么是0-1背包:

背包问题通俗的说,就是假如你面前有5块金块速分别为a, b, c, d, e,每块金块的重量不同,并且每块金块所带来的价值也不同(注意:这里金块的重量的价值没有特定关系),目前我们有一个背包,只有固定的容量,要解决的问题就是在一定容量的背包面前装哪几块金块才能获取到最大的价值,对于每块金块我们只有拿或者不拿这两种选择,拿为1不拿为0,因此叫做0-1背包问题。下面我们给出思想,以及步骤

实例讲解 

假设a, b, c, d, e五块金块的重量分别为1, 4, 2, 5, 2,价值分别为1, 6, 5,3, 1 ,我们目前的背包可以装重量为10的物品,怎么装才能使得获取的价值最大?

我们的思想很简单,就是我们把它们装到背包中,带出去让他属于自己,但是如果盲目的去装,不知道他们的价值,你装到背包里面的没有别人装到背包里面的价值高,那么你就等于这次你吃亏了,没有动脑筋,只顾着去装满背包了,那么我们动态规划一下,它却能帮助我们取得最大值。那么我们是不是有必要去规划一下。

实例规划: 

背包容量c:10

w(重量):     1, 4, 2, 5, 2

v(价值):      1, 6, 5,3, 1 


上面的数组数字是物品的重量和下面是其对应的价值,那么我们想要是背包利用空间充足利用同时保持最后结果为最大价值,那么由上面我们可以很容易的相处最优解,就是最大价值:13

背包里面装:1   4   2   2

对应价值       1   6   5    1                        输出最大价值为:1+6+5+1=13;


那么物品种类少我们能看出来,如果物品多了我们就看不出来了

背包容量c:20

比如: w(重量): 1        5        15        13        4        8        9        6        3        1        2

            v (价值): 5        9        10        8       13       11      15        2        3        7        9

这样一来上面的数组数字在想要很快的找出最优解,最大价值,就很难很快得出结论,那么这样就可以把它动态规划实现在计算机上让它来帮助我们找出最大价值。那么下面我们开始进行计算机代码实现。

代码思想:

主要执行公式:动态规划算法

m(i,j)=\begin{Bmatrix} max\begin{Bmatrix} m(i+1,j),m(i+1,j-w_{i})+v_{i} \end{Bmatrix} & j >= w_{i} \\ m(i+1,j)& 0=< j <w_{i} \end{Bmatrix}

 步骤实现详解:

我们以这个数组例子作为讲解:n(物品种类);   c(背包容量); w(每个物品的的重量);v(每个物品对应的价值(w1对应v1));

 实现:

第一行根据上面公式得公式:

m(n,j)=\begin{Bmatrix} v_{n}& j>=w_{n} \\ 0& 0=<j<w_{n} \end{Bmatrix}

根据代码:

 //开始进行动态规划
        int n = w.length-1;
        int min = Math.min(w[n]-1,c);
        for(int i = 0; i <= min; i++)
        {
            m[n][i] = 0;
        }
        for(int j = w[n]; j <= c; j++)
        {
            m[n][j] = v[n];
        }

可以把表格填入:

剩余行根据公式:

m(i,j)=\begin{Bmatrix} max\begin{Bmatrix} m(i+1,j),m(i+1,j-w_{i})+v_{i} \end{Bmatrix} & j >= w_{i} \\ m(i+1,j)& 0=< j <w_{i} \end{Bmatrix}

根据代码可填入:
  for(int i = n-1; i >= 0; i--)
        {
            min = Math.min(w[i]-1,c);
            for(int j = 0; j <= min; j++)
            {
                m[i][j] = m[i+1][j];
            }
            for(int j = w[i]; j <= c; j++)
            {
                m[i][j] = Math.max(m[i+1][j],m[i+1][j - w[i]]+v[i]);
            }
        }

 结论:

那么可知:m[0][c]就是我们想要的结果,即是上表的m[0][10];就是0-1背包的最优解;能存放的最大值。

代码实现:

/**
 * 动态规划实现0-1背包在固定容量c的情况下获得最大价值问题,输出可容纳的最大价值,输入物品种类、背包容量、物品重量和价值,输出最大价值。
 *
 *
 *
 * 格式要求可参考如下:
 *
 * 输入:
 *
 *       请输入物品种类n,并按Enter换行:5
 *
 *       请输入背包容量c,并按Enter换行:10
 *
 *       请输入n个物品的重量,中间以英文逗号隔开,按Enter结束:1,4,2,5,2
 *
 *       请输入n个物品的价值,中间以英文逗号隔开,并按Enter结束: 1,6,5,3,1
 *
 * 输出:13
 */

import java.util.Scanner;
public class Knapsack {
    public static void main(String[] args) {
        Scanner s = new Scanner(System.in);

        System.out.print("请输入物品种类n,并按回车换行:>");
        int n = s.nextInt();

        System.out.print("请输入背包容量c,并按回车换行:>");
        int c = s.nextInt();

        System.out.print("请输入n个物品的重量,中间以英文逗号隔开,按Enter结束:>");
        String input1 = s.next();
        String[] string1 = input1.split(",");
        int[] w = new int[n];
        for(int i = 0; i < n; i++)
        {
            w[i] = Integer.parseInt(string1[i]);
        }


        System.out.print("请输入n个物品的价值,中间以英文逗号隔开,并按Enter结束:>");
        String input2 = s.next();
        String[] string2 = input2.split(",");
        int[] v = new int[n];
        for(int i = 0; i < n; i++)
        {
            v[i] = Integer.parseInt(string2[i]);
        }

        //开辟一个存放动态规划的数字
        int[][] m = new int[n][c+1];

        //传入功能函数实现
        Knapsack.knapsack(v,w,c,m);
        //输出最大价值
        System.out.println("输出最大价值为:>" + m[0][c]);
    }

    public static void knapsack(int []v, int []w, int c, int[][]m){

        //开始进行动态规划
        int n = w.length-1;
        int min = Math.min(w[n]-1,c);
        for(int i = 0; i <= min; i++)
        {
            m[n][i] = 0;
        }
        for(int j = w[n]; j <= c; j++)
        {
            m[n][j] = v[n];
        }

        for(int i = n-1; i >= 0; i--)
        {
            min = Math.min(w[i]-1,c);
            for(int j = 0; j <= min; j++)
            {
                m[i][j] = m[i+1][j];
            }
            for(int j = w[i]; j <= c; j++)
            {
                m[i][j] = Math.max(m[i+1][j],m[i+1][j - w[i]]+v[i]);
            }
        }

    }


}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值