逻辑回归(正则化)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# 导入并处理数据
path = "E:\\study_data\\data_sets\\ex2data2.txt"
data_init = pd.read_csv(path, header=None, names=['Test 1', 'Test 2', 'Accepted'])

# 可视化训练集
positive2 = data_init[data_init['Accepted'].isin([1])]
negative2 = data_init[data_init['Accepted'].isin([0])]

fig, ax = plt.subplots(figsize=(12, 8))
ax.scatter(positive2['Test 1'], positive2['Test 2'], s=50, c='b', marker='o', label='Accepted')
ax.scatter(negative2['Test 1'], negative2['Test 2'], s=50, c='r', marker='x', label='Not Accepted')
ax.legend()
ax.set_xlabel('Test 1 Score')
ax.set_ylabel('Test 2 Score')
plt.show()

degree = 6
data2 = data_init
x1 = data2['Test 1']
x2 = data2['Test 2']

data2.insert(3, 'Ones', 1)
# 在第三列插入新数据值为1
for i in range(1, degree + 1):
    # 上面这一层for循环表示多项式的次数,当多项式为一次,两次,三次...的时候下面这个for循环列出所有能组合成这个次数的情况。
    for j in range(0, i + 1):
        data2['F' + str(i - j) + str(j)] = np.power(x1, i - j) * np.power(x2, j)
        # 列出所有可能的情况

# 删除这两个单独的特征值,换成多项式形式的特征值(多项式中包含单独的特征值)
data2.drop('Test 1', axis=1, inplace=True)
data2.drop('Test 2', axis=1, inplace=True)


def sigmoid(z):
    return 1 / (1 + np.exp(-z))


# 实现正则化代价函数
def costReg(theta, X, y, LearningRate):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    # first 和second使用的是theta代入整体的样本,来计算差值
    first = np.multiply(-y, np.log(sigmoid(X * theta.T)))
    second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))

    # reg是计算当前采用的theta的平方,用来惩罚模型
    reg = (LearningRate / (2 * len(X))) * np.sum(np.power(theta[:, 1:theta.shape[1]], 2))
    # theta[:, 1:theta.shape[1]]表示取除了第一列的所有列,因为第一列是截距列不参与不参与模型的训练
    return np.sum(first - second) / len(X) + reg


# 实现正则化的梯度下降函数,利用优化函数(所以不用更新theta,由优化函数来进行更新)
def gradientReg(theta, X, y, learingRate):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)

    parameters = int(theta.ravel().shape[1])
    grad = np.zeros(parameters)
    error = sigmoid(X * theta.T) - y
    for i in range(parameters):
        term = np.multiply(error, X[:, i])
        if (i == 0):
            grad[i] = np.sum(term) / len(X)
        else:
            grad[i] = (np.sum(term) / len(X)) + ((learingRate / len(X)) * theta[:, i])

    return grad


cols = data2.shape[1]
# 求数据的列数
X2 = data2.iloc[:, 1:cols]
# 除了第一列的其他列
y2 = data2.iloc[:, 0:1]
# 第一列
theta2 = np.zeros(cols - 1)
# 比列数少一个,与X2进行匹配

# 将两个数据转化为numpy数组以便进行矩阵运算
X2 = np.array(X2.values)
y2 = np.array(y2.values)

learningRate = 1

print(costReg(theta2, X2, y2, learningRate))

# 用工具库函数进行求解参数
import scipy.optimize as opt

result = opt.fmin_tnc(func=costReg, x0=theta2, fprime=gradientReg, args=(X2, y2, learningRate))
print(result)
print(np.shape(X2))
print(np.shape(y2))
print(np.shape(theta2))


# 定义预测函数
def predict(theta, X):
    probability = sigmoid(X * theta.T)
    # 因为传入的X可能是个多维矩阵,所以probability有很多结果
    return [1 if x >= 0.5 else 0 for x in probability]


# 统计预测的正确率
theta_min = np.matrix(result[0])
predictions = predict(theta_min, X2)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y2)]
# zip将实际值和预测值放一起,如果实际值与预测值相同返回1,否则返回0
accuracy = (sum(map(int, correct)) / len(correct))
# map函数是用来将correct数组中每个元素都转化为整型,求和后是正确的样本数
print(f"{accuracy:.2f}")


# 生成一个函数,该函数就是h(x),也就是预测函数
def hfunc(theta, x1, x2):
    temp = theta[0][0]
    place = 0
    for i in range(1, degree + 1):
        for j in range(0, i + 1):
            temp += np.power(x1, i - j) * np.power(x2, j) * theta[0][place + 1]
            # temp是一个函数,theta[0][place+1]表示的是多项式的系数
            place += 1
    return temp


# 边界曲线(决策界限),绘制决策边界就是让sigmoid函数取值为0.5
# 也就是让theta.T*X的结果是0,也就是预测函数h(x)的值为0
def find_decision_boundray(theta):
    t1 = np.linspace(-1, 1.5, 1000)
    # 生成cong-1到1.5的1000个等差数列
    t2 = np.linspace(-1, 1.5, 1000)

    cordinates = [(x, y) for x in t1 for y in t2]
    # 使用列表推导式,生成一个包含所有x,y的元组的列表,可用于图像绘制和数值计算
    x_cord, y_cord = zip(*cordinates)
    # 将元组的两个元素分开单独生成两个元组
    h_val = pd.DataFrame({'x1': x_cord, 'x2': y_cord})
    # 生成一个Dateframe对象,包含两个列x1,x2,dateframe对象可以用来存储和处理数据,
    # 在本次使用中是用来绘制一个二维图像,x1,x2对应两个自变量
    h_val['hval'] = hfunc(theta, h_val['x1'], h_val['x2'])
    # 生成一个新列'hval',存储的是二维函数的高度,h(x)的值,决策曲线是让h(x)等于0,这里采用近似的思想
    decision = h_val[np.abs(h_val['hval']) < 2 * 10 ** -3]
    # np.abs是用来计算绝对值,筛选出符合条件的行,决策去曲线包含的点
    return decision.x1, decision.x2


fig, ax = plt.subplots(figsize=(12, 8))

ax.scatter(positive2['Test 1'], positive2['Test 2'], s=50, c='b', marker='o', label='Accepted')
ax.scatter(negative2['Test 1'], negative2['Test 2'], s=50, c='r', marker='x', label='Accepted')

ax.set_xlabel('Test 1 Score')
ax.set_ylabel('Test 2 Score')
x, y = find_decision_boundray(result)
plt.scatter(x, y, c='y', s=10, label='Prediction')
ax.legend()
plt.show()

边界曲线:h(x) = sigmoid(theta.T*X) = 1/2

也就是  theta.T*X = 0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
要实现逻辑回归问题的正则化代码,可以参考引用中提供的代码段。下面是一个示例: ``` # 实现正则化的代价函数 def costReg(theta, X, y, learningRate): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) first = np.multiply(-y, np.log(sigmoid(X * theta.T))) second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T))) reg = (learningRate / (2 * len(X))) * np.sum(np.power(theta[:,1:theta.shape = np.sum(term) / len(X) else: grad[i = (np.sum(term) / len(X)) + ((learningRate / len(X)) * theta[:,i]) return grad ``` 这段代码实现了使用正则化逻辑回归的代价函数和梯度函数。代价函数计算了损失函数,并加上了正则化项,用于减少特征的影响,避免过拟合。梯度函数计算了每个参数的梯度,同样也考虑了正则化项。这些函数可以用于训练逻辑回归模型并进行预测。 请注意,这里的sigmoid函数是在代码段中提供的,用于将预测值进行非线性的变化。 : 逻辑回归:适用于解决分类问题,区别于线性回归:线性回归用于解决预测性的问题,都是连续性的值,而逻辑回归则需要将数据进行分类。正则化:为了解决过拟合的问题。过拟合是指模型在训练集上表现良好,但在测试集上表现较差的现象。正则化通过对一些特征引入惩罚项来减小这些特征的影响,从而防止过拟合的发生。 : 这段代码实现了逻辑回归问题的正则化代码。`costReg`函数计算了带有正则化项的代价函数,`gradientReg`函数计算了带有正则化项的梯度函数。这些函数可以用于训练逻辑回归模型,并通过调用`sigmoid`函数进行预测。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值