树模型特征选择

树模型特征选择的目的是通过选择最相关的特征来构建具有较高预测能力的树模型。树模型特征选择的原理基于两个关键概念:纯度和信息增益。纯度是指节点中目标变量的混杂程度,信息增益是指在某个特征的条件下,目标变量的不确定性减少的程度。树模型特征选择的方法通常包括基于纯度的方法(如基尼指数、熵)和基于信息增益的方法(如信息增益、信息增益比)。

流程:

步骤1:准备数据集。首先,需要准备一个包含特征和目标变量的数据集。特征可以是数值型或离散型的,而目标变量通常是一个连续值或离散类别。

步骤2:树模型构建。选择合适的树模型算法,如决策树、随机森林等,进行模型的构建。树模型的构建过程中,会根据选择的特征进行节点的划分。

步骤3:特征选择方法选择。根据具体的问题和数据特点,选择适合的特征选择方法。常见的方法包括基尼指数、熵、信息增益、信息增益比等。

步骤4:特征评估和排序。根据特征选择方法的要求,对特征进行评估和排序。通过计算各个特征的纯度或信息增益,可以确定特征的重要性。

步骤5:特征选择和模型训练。根据特征的重要性排序,选择具有重要性的特征,将其作为输入特征,训练树模型。在决策树中,选择重要特征作为节点进行划分;在随机森林中,选择重要特征作为子树的划分依据。

步骤6:模型评估和优化。使用测试数据集对模型进行评估,根据评估结果进行模型的优化和调整。如果模型性能不理想,可以重新进行特征选择和模型训练的迭代过程。

通过上述流程,树模型特征选择可以帮助我们选择最具有预测能力的特征,提高模型的性能和解释性。树模型特征选择方法基于纯度和信息增益的原理,能够有效地选择重要特征,构建具有较高预测能力的树模型。树模型特征选择是建立高效、准确的树模型的重要步骤,可以应用于各种领域和任务,如分类、回归、特征重要性分析等。

参考代码

import pandas as pd  
import numpy as np  
import matplotlib.pyplot as plt  
from sklearn.model_selection import train_test_split  
from sklearn.ensemble import RandomForestRegressor  
from sklearn.feature_selection import SelectFromModel  
from sklearn.metrics import mean_squared_error, r2_score  
  
# 读取数据  
data = pd.read_csv('your_file.csv')  # 请将'your_file.csv'替换为你的数据文件名  
  
# 删除含有NaN值的行  
data = data.dropna(subset=['b_p', 'pwv', 'age', 'gender', 'rbsbp', 'lbsbp', 'lasbp', 'rasbp'])  
  
# 初步特征集  
X_preliminary = data[['b_p', 'age', 'gender',  'rbsbp', 'lbsbp', 'lasbp']]  
y = data['pwv']  # 目标变量  
  
# 使用随机森林进行特征选择  
rf = RandomForestRegressor(n_estimators=50, random_state=42)  
selector = SelectFromModel(rf, threshold='median')  # 使用中位数作为阈值  
X_selected = selector.fit_transform(X_preliminary, y)  
  
# 获取被选中的特征列索引  
selected_feature_indices = selector.get_support(indices=True)  
selected_features = X_preliminary.columns[selected_feature_indices]  
  
# 创建新的DataFrame仅包含选中的特征  
X = X_preliminary[selected_features]  
  
# 划分数据集为训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)  
  
# 使用选中的特征创建随机森林回归模型并进行拟合  
model = RandomForestRegressor(n_estimators=50, random_state=42)  
model.fit(X_train, y_train) 

# 输出特征重要性
importances = model.feature_importances_  
std = np.std([tree.feature_importances_ for tree in model.estimators_], axis=0)  
indices = np.argsort(importances)[::-1]  
plt.figure(figsize=(3, 3))  
plt.title("Feature Importances")  
plt.bar(range(X.shape[1]), importances[indices], color="r", yerr=std[indices], align="center")  
plt.xticks(range(X.shape[1]), X.columns[indices], rotation=45)
plt.xlim([-1, X.shape[1]])  
plt.show()

  • 21
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值