清图
码龄13年
关注
提问 私信
  • 博客:1,011,040
    社区:687
    1,011,727
    总访问量
  • 348
    原创
  • 2,829
    排名
  • 1,416
    粉丝
  • 学习成就

个人简介:微信:qinghuashuyou微博:清华大学出版社第五事业部

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2011-11-02
博客简介:

清图出版

博客描述:
分享更新更好的IT图书,提供精彩文章与君共享,期待与大家共同进步!
查看详细资料
博客首页
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,476
    当月
    1
个人成就
  • 企业官方账号
  • 获得1,578次点赞
  • 内容获得1,108次评论
  • 获得1,831次收藏
创作历程
  • 86篇
    2024年
  • 72篇
    2023年
  • 19篇
    2022年
  • 23篇
    2021年
  • 24篇
    2020年
  • 3篇
    2019年
  • 3篇
    2018年
  • 3篇
    2017年
  • 2篇
    2015年
  • 13篇
    2014年
  • 24篇
    2013年
  • 71篇
    2012年
  • 7篇
    2011年
成就勋章
TA的专栏
  • 移动开发
    34篇
  • 人工智能
    21篇
  • 开发语言
    5篇
  • 安全架构
  • 软件开发
    15篇
  • 代码整洁
    1篇
  • 代码重构
  • Java17
    1篇
  • Unity开发
    3篇
  • kotlin
    1篇
  • 概率图
  • 并行计算
    2篇
  • 高性能计算
    2篇
  • 大数据应用
    2篇
  • 架构
  • 异步
  • 前端开发
    1篇
  • spark
    1篇
  • TC39
  • TensorFlow
    1篇
  • Python
    7篇
  • C#
    1篇
  • 游戏开发
    3篇
  • C++
  • C++20
    1篇
  • 安全认证
    4篇
  • 云
    1篇
  • CISA
    1篇
  • 信息系统审计师认证
    1篇
  • JavaScript
    1篇
  • 数据处理
  • 数据流处理
    1篇
  • 汇编语言
    1篇
  • tidyverse
    2篇
  • mlr
    2篇
  • 区块链
  • 云服务
    5篇
  • ASP.NET Core
    4篇
  • 并发编程
    2篇
  • 微服务
    2篇
  • 自然语言处理
    1篇
  • 云计算
    10篇
  • 数据库
    21篇
  • 安全技术
    19篇
  • 开发技术
    42篇
  • 网络技术
    11篇
  • 信息化
    19篇
  • 操作系统
    8篇
  • DB2
    2篇
  • 活动
    4篇
  • 新年
    1篇
兴趣领域 设置
  • 编程语言
    python
  • 数据结构与算法
    算法
  • 大数据
    flink
  • 人工智能
    机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
  • 音视频
    opencv语音识别计算机视觉
每周一书推荐
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

AI赋能:数字孪生的建模、计算与未来

在内容编排上,该书更是匠心独运,全面而深入。它首先为我们铺设了实现数字孪生所需的计算与工程基石,诸如传感器、执行器、物联网、云计算等关键要素,这些要素如同数字孪生技术的血脉,为其注入了生命与活力。这些难点和重点在作者的笔下变得生动有趣,通过深入浅出的讲解和丰富的案例,让我们轻松掌握了这些关键技能,为我们在数字孪生领域的实践探索提供了有力保障。这些案例不仅展示了数字孪生技术的广泛应用前景,更为我们提供了宝贵的实践经验和深刻启示,让我们在探索数字孪生技术的道路上更加从容自信。在翻译质量上,该书同样表现出色。
原创
发布博客 2024.10.31 ·
312 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

未来已来:揭秘AI数字孪生的建模与计算奥秘

本书采用弹簧-质量-阻尼系统的物理孪生模型介绍数字孪生,这是一种大多数工程师和科学家都能上手的物理系统数学模型。本书首先介绍实现数字孪生所需的计算和工程背景,其中包括传感器、执行器、物联网、云计算、估算算法、高性能计算、无线通信和区块链等助推数字孪生实现成为可能的概念;在多个章节提供了有关动态系统建模、电气类比、概率和统计、不确定性建模与量化,以及系统可靠性和鲁棒性的资料;通过一个动态系统的案例研究说明数字孪生的概念;系统的退化模型与系统传感器的数据结合可支持构建对物理系统进行实时跟踪的数字孪生系统。
原创
发布博客 2024.10.31 ·
226 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

《分布式机器学习模式》:解锁云端分布式ML系统的实战宝典

此外,还介绍了扇入和扇出模式、同步和异步模式以及步骤记忆化模式等工作流模式,这些模式对于创建复杂的分布式机器学习工作流具有重要意义。通过这本书的学习和实践,你将能够掌握分布式机器学习系统的前沿技术,并将其应用于实际工作中,最终构建一个全面、高效、稳定的分布式机器学习系统。《分布式机器学习模式》一书,正是为解决这些难题而生,它提供了一套实用的方法和模式,帮助在云端分布式Kubernetes集群中运行机器学习系统。本书开篇便深入剖析了分布式机器学习系统的背景和概念,让读者对分布式系统的复杂性有了全面的认识。
原创
发布博客 2024.10.31 ·
447 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

《分布式机器学习模式》新书推荐

是一本关于在云端分布式 Kubernetes 集群中运行机器学习系统的实用模式的书籍。其中每个模式都旨在帮助解决构建分布式机器学习系统时遇到的常见难题,包括支持分布式模型训练、处理意外故障和动态模型服务流量。通过真实场景的示例,本书清晰地展示了如何应用每个模式,以及每种方法的利弊权衡。一旦掌握了这些前沿技术,你就能将其应用于实践,并最终构建一个全面的分布式机器学习系统。
原创
发布博客 2024.10.31 ·
330 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

《AI产品经理手册》——解锁AI时代的商业密钥

在当今这个日新月异的AI时代,每一位产品经理都面临着前所未有的挑战与机遇,唯有紧跟时代潮流,深入掌握AI技术的精髓,才能在激烈的市场竞争中独占鳌头。《AI产品经理手册》正是这样一部为AI产品经理量身定制的实战宝典,它不仅全面覆盖了AI产品管理的各个关键环节,还通过丰富的案例和实践经验,助力读者将理论知识与实践操作紧密融合,实现个人能力的飞跃提升。作者以深入浅出的笔触,将原本晦涩难懂的AI技术原理转化为通俗易懂的语言,让读者在轻松愉快的阅读中掌握AI产品管理的精髓所在。
原创
发布博客 2024.10.31 ·
387 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

AI产品经理实战手册:策略、开发与商业化指南

通过《AI产品经理手册》,将可以了解不同类型的AI,如何将AI整合到产品或业务中,以及支持创建AI产品或将AI集成到现有产品所需的基础设施。熟悉实践管理AI产品开发流程、评估和优化AI模型,以及应对与AI产品相关的复杂伦理和法律问题等相关知识。通过案例研究和学习,在快速发展的AI和机器学习领域保持领先地位。通过阅读本书,读者将能够从产品角度全面了解AI领域。
原创
发布博客 2024.10.31 ·
925 阅读 ·
10 点赞 ·
0 评论 ·
7 收藏

轻松掌握简单绘图技巧,快捷传达产品理念、路线图和方法

从简明的草图勾勒,到繁复的流程图示从直观的图表呈现,到富有感染力的视觉叙事,每一个实例都生动地阐述了手绘如何助力我们捕捉稍纵即逝的灵感,探索概念的边界,擘画创意的蓝图,并最终推动设计的创新。肯特·艾森胡斯(Kent Eisenhuth)先生撰写的这部力作,犹如一股清泉,引领我们回溯至产品设计的本源,以平实且中肯的语言,重申了手绘在创意孵化与设计沟通中不可替代的地位。随着我们要解决的设计问题变得越来越复杂,设计思维越来越流行,身为数字产品设计师的我们会越来越认同本书所阐述的要点。遥不可及或令人生畏?
原创
发布博客 2024.10.28 ·
390 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

《分布式机器学习模式》:解锁分布式ML的实战宝典

这部分内容不仅涵盖了从模型训练到部署的完整流程,还通过实际案例分析,让读者能够深入理解每一步的具体操作和背后的原理。然而,随着数据量的爆炸性增长和模型复杂度的提升,单机环境下的机器学习已经难以满足实际需求。书中不仅详细介绍了数据摄取、分布式训练、模型服务等核心概念,还通过数十种设计和部署分布式机器学习系统的技术模式,为读者提供了实战中的“瑞士军刀”。在分布式系统中,如何确保模型的稳定性和性能,如何及时发现并解决问题,都是至关重要的。而本书通过一系列实用的工具和技巧,为读者提供了有效的解决方案。
原创
发布博客 2024.10.23 ·
635 阅读 ·
9 点赞 ·
0 评论 ·
3 收藏

分布式机器学习模式 精彩试读

此外,本书还包括一个实践项目,通过构建一个端到端的分布式机器学习 系统,将书中介绍的许多模式应用于实际场景。在实际的机器学习系统中,还必须详尽地设 计许多其他重要组件,例如数据摄取、模型服务和工作流编排,以使系统具有 可扩展性、高效性和可移植性。近年来,机器学习取得了巨大进步,但大规模机器学习仍然面临挑战。以 模型训练为例,由于 TensorFlow、PyTorch 和 XGBoost 等机器学习框架具有多 样性,从而使得在分布式 Kubernetes 集群上自动化训练机器学习模型的过程并 不简单。
原创
发布博客 2024.10.23 ·
182 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

新书推荐——《函数式与并发编程》

原创
发布博客 2024.09.30 ·
129 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

程序员必备的一本工具书——《函数式与并发编程》

值得一提的是,后起之秀编程语言 Rust,是一门能构建可靠且高效软件的语言,以高性能、并发和安全性等特性而著称,得到了很多程序员的青睐,在 Stack Overfow 年度开发者调查中,连续八年荣登“最受欢迎编程语言”榜首。另一个导致函数式编程普及度不高的原因是,函数式编程是一种编程思想,涉及特性多,且许多程序都只采用了部分函数式编程风格,因此相关的教材较少。并发编程可以提升系统性能,提高代码效率,增强程序的可扩展性,改善用户体验等,但并发编程复杂度大,学习成本较高,涉及的编程语言思想和特性多,极难掌握。
原创
发布博客 2024.09.30 ·
592 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

如何创建出更鲁棒、更值得信赖的大模型

在本书《Python贝叶斯深度学习》中,你将通过学习实际案例发现贝叶斯深度学习背后的基本原理,从而加深对该领域的理解,并掌握构建自己的贝叶斯深度学习模型所需的知识和工具。第一部分(第 1~3 章)是基础概念和理论,主要介绍深度学习的发展 历史和局限性,以及它与贝叶斯推理结合的时机、贝叶斯推理基础、深度学习基础;本书并不是一本讨论贝叶斯深度学习理论的著作,而是将理论进行了简化,着重讲述其代码实现,以及贝叶斯深度学习工具集使用方面的实战技巧。第三部分(第 8~9 章),讲述贝叶斯深度学习的应用和发展趋势。
原创
发布博客 2024.09.30 ·
183 阅读 ·
6 点赞 ·
0 评论 ·
1 收藏

学习高级深度学习的必备书——深度学习精粹

本书通过平实的语言解析、详尽的代码注释,以及数十个基于PyTorch框架的实战示例,逐步引导你探索深度学习的核心概念与实用工具。《深度学习精粹》对于任何有兴趣了解深度学习细节的人来说,这都是一本不可或缺的好书,如果你想了解深度学习背后的奥秘,并开始了解它是如何工作的、何时使用它以及如何自信地使用它,你就应该阅读本书!深入理解其模型和算法的实际运作机制,是驾驭并优化结果的关键。《深度学习精粹与PyTorch实践》以浅显易懂的方式揭示了深度学习算法的内部运作机制,即使是机器学习初学者也能轻松理解。
原创
发布博客 2024.09.30 ·
250 阅读 ·
5 点赞 ·
0 评论 ·
2 收藏

机器学习基本上就是特征工程——《特征工程训练营》

优秀的特征工程能够产生更高效的数据集,使我们能够采用更快速、更小的模型,而不是依赖于通过混乱数据训练出来的缓慢而复杂的模型。更应该关注以数据为中心的机器学习方法。作为机器学习流程的一部分,特征工程是对数据进行转化以提高机器学习性能的艺术。特征工程的四个步骤包括特征理解、特征结构化、特征优化和特征评估。特征优化--为了尽可能地从数据中提取信号和模式。特征结构化--为了在机器学习中有效组织数据。● 用非结构化数据构建ML(机器学习)流程。特征评估--根据机器学习调整特征工程。特征理解--为了更好地解释数据。
原创
发布博客 2024.09.30 ·
378 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

特征工程——一门提高机器学习性能的艺术

你将学会清洗和转换数据,减轻偏见。通过“特征工程”技术,可优化训练数据,提升机器学习流程的输出效果!“特征工程”基于现有数据设计相关的输入变量,由此简化训练过程,增强模型性能。许多知名的 AI专家正在敦促数据科学家更关注以数据为中心的机器学习视角,而不是过于关注模型选择和超参数调整过程。当前围绕人工智能(AI)和机器学习(ML)展开的许多讨论以模型为中心,聚焦于 ML和深度学习(DL)的最新进展。类似MLOps的领域正迅速发展,通过系统性地训练和利用ML模型,尽量减少人为干预,以“释放”工程师的时间。
原创
发布博客 2024.09.30 ·
668 阅读 ·
9 点赞 ·
0 评论 ·
2 收藏

一本通过PyTorch深度学习框架将理论、工具和实战融为一体的知识库

对于任何有兴趣了解深度学习细节的人来说,这都是一本不可或缺的好书。
原创
发布博客 2024.09.26 ·
97 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

新书推荐——《深度学习精粹与PyTorch实践》

Edward Raff博士是Booz Allen Hamilton公司的首席科学家,也是战略创新集团机器学习研究团队的共同负责人。他的工作涉及监督内部研究、招聘和培养技术人才、与高校合作伙伴合作以及专门从事高端机器学习的业务开发。Raff博士还协助几位客户开展高级研究。他对机器学习的写作、开发和教学的热情源于他渴望分享自己对机器学习所有领域的热爱。
原创
发布博客 2024.09.26 ·
484 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

贝叶斯推理和深度学习碰撞会产生什么?都在这本书里面

本书主题是贝叶斯深度学习,顾名思义, 它是贝叶斯推理和深度学习结合的产物。本书内容共分三部分,第一部分(第 1~3 章)是基础概念和理论,主要介绍深度学习的发展 历史和局限性,以及它与贝叶斯推理结合的时机、贝叶斯推理基础、深度学习基础;不过,本书并不是一本讨论贝叶斯深度学习理论的著作, 而是将理论进行了简化,着重讲述其代码实现,以及贝叶斯深度学习工具集使用方面的实战技 巧。其中,贝叶斯派的主要核心思想是进行主观概率估计,其典型代表是贝叶斯推理,而 联结主义则源于神经科学,最典型的代表是深度学习。
原创
发布博客 2024.09.26 ·
230 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

新书推荐——《Python贝叶斯深度学习》

在过去的十年中,机器学习领域取得了长足的进步,并因此激发了公众的想象力。但我们必须记住,尽管这些算法令人印象深刻,但它们并非完美无缺。本书旨在通过平实的语言介绍如何在深度学习中利用贝叶斯推理,帮助读者掌握开发“知其所不知”模型的工具。这样,开发者就能开发出更鲁棒的深度学习系统,以便更好地满足现今基于机器学习的应用需求。深度学习正日益深刻地渗入我们的生活,从建议内容到在任务关键型和安全关键型应用中发挥核心作用,其影响无所不在。
原创
发布博客 2024.09.26 ·
630 阅读 ·
8 点赞 ·
0 评论 ·
4 收藏

智能营销才是营销的未来

智能营销——大模型如何为运营与产品经理赋能》这本书不仅是一本关于如何利用人工智能大模型进行数字化营销的实战指南,更是一本启发我们思考未来营销趋势的思想宝库。在这个数字化时代,只有紧跟技术发展的步伐,充分利用人工智能大模型的强大能力,我们才能在激烈的市场竞争中占据先机,实现业绩的持续增长。让我们携手共进,迎接智能营销的新纪元!
原创
发布博客 2024.09.14 ·
456 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏
加载更多