线性代数 第二章 行列式 期末复习知识点总结

2.1排列与对换

排列

定义1 自然数1,2,3,……,n排成有序数组,称为n级排列,记为 i1,i2,i3,……,in

​ n个数的全部n级排列有n!种

定义2 排列中某个大数排在某个小数之前,称这个数构成一个逆序

定义3 排列中出现的逆序总个数称为排列的逆序数,记为τ(i1,i2,i3,…,in

​ 自然排列:τ最小,任意两个数不构成逆序

​ 递减排列:τ最大,τ=n(n-1)/2

​ 奇偶性 奇排列τ为奇数,偶排列τ为偶数

对换

定义4 排列中某两个数交换位置,其余数位置不动称为对换

​ 相邻两个数对换称为相邻对换

引理1 相邻对换 排列的奇偶性改变

​ 对换相距s的数,共相邻对换2s+1次,即奇数次对换,奇偶性改变

定理2 1,2,n的两个排列 i1,i2,…,in j1,j2,…,jn做同样的对换,各自的奇偶性改变,但逆序数之和的奇偶性不变

2.2n阶行列式的完全展开式

n阶行列式的定义

∣ a 11 a 12 . . . a 1 n . . . . . . a n 1 a n 2 . . . a n n ∣ = ∑ j 1 , j 2 , . . . , j n ( − 1 ) τ ( j 1 , j 2 , . . . j n ) a 1 j 1 a 2 j 2 . . . a n j n \left| \begin{matrix} a_{11} &a_{12} &... &a_{1n}\\ ... & & &...\\ a_{n1} &a_{n2} &... &a_{nn} \end{matrix} \right| =\sum_{j_1,j_2,...,j_n}(-1)^{τ(j_1,j_2,...j_n)}a_{1j_1}a_{2j_2}...a_{nj_n} a11...an1a12an2......a1n...ann =j1,j2,...,jn(1)τ(j1,j2,...jn)a1j1a2j2...anjn

特点:

​ (1)每项是取不同行且不同列的n个元素乘积

​ 每项中把元素行标自然排列,则列标有n!种排法

​ (2)n!项求和

​ (3)该项符号固定不变:元素列标排列的逆序数做-1的指数

完全展开式

按行展开 ∑ i 1 , i 2 , . . . , i n ( − 1 ) τ ( i 1 , i 2 , . . . i n ) a i 1 1 a i 2 2 . . . a j n n 完全展开 ∑ ( − 1 ) τ ( i 1 , i 2 , . . . i n ) + τ ( j 1 , j 2 , . . . j n ) a i 1 j 1 a i 2 j 2 . . . a i n j n 按行展开\sum_{i_1,i_2,...,i_n}(-1)^{τ(i_1,i_2,...i_n)}a_{i_11}a_{i_22}...a_{j_nn}\\ 完全展开\sum(-1)^{{τ(i_1,i_2,...i_n)+τ(j_1,j_2,...j_n)}}a_{i_1j_1}a_{i_2j_2}...a_{i_nj_n} 按行展开i1,i2,...,in(1)τ(i1,i2,...in)ai11ai22...ajnn完全展开(1)τ(i1,i2,...in)+τ(j1,j2,...jn)ai1j1ai2j2...ainjn

共同点:

​ (1)n!项代数和

​ (2)每项是n个不同行不同列的元素乘积

​ (3)符号是下标排列逆序数之和做-1的指数

2.3行列式的性质

行列式的转置

性质1 行列式转置,行列式的值不变 即|A|=|A|

行列式的倍法变换

∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . k a i 1 k a i 2 . . . k a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = k ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \left| \begin{matrix} a_{11} &a_{12} &... &a_{1n}\\ ...&...&...&...\\ ka_{i1} &ka_{i2} &... &ka_{in}\\ ...&...&...&...\\ a_{n1} &a_{n2} &... &a_{nn} \end{matrix} \right| =k\left| \begin{matrix} a_{11} &a_{12} &... &a_{1n}\\ ...&...&...&...\\ a_{i1} &a_{i2} &... &a_{in}\\ ...&...&...&...\\ a_{n1} &a_{n2} &... &a_{nn} \end{matrix} \right| a11...kai1...an1a12...kai2...an2...............a1n...kain...ann =k a11...ai1...an1a12...ai2...an2...............a1n...ain...ann

性质2 一列(行)公因子可以提出

推论 一列(行)的元素全部为0,则行列式为0

​ |kA|=kn|A|

行列式的互换变化

性质3 交换某两行(列),行列式变号

推论 有两行(列)相等的行列式为0

行列式的消法变换

性质4 把行列式的某一行(列)的各元素乘同一数然后加到另一行(列),行列式的值不变
∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a j 1 a j 2 . . . a j n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 + a j 1 a i 2 + a j 2 . . . a i n + a j n . . . . . . . . . . . . a j 1 a j 2 . . . a j n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \left| \begin{matrix} a_{11} &a_{12} &... &a_{1n}\\ ...&...&...&...\\ a_{i1} &a_{i2} &... &a_{in}\\ ...&...&...&...\\ a_{j1} &a_{j2} &...&a_{jn}\\ ...&...&...&...\\ a_{n1} &a_{n2} &... &a_{nn} \end{matrix} \right|=\left| \begin{matrix} a_{11} &a_{12} &... &a_{1n}\\ ...&...&...&...\\ a_{i1}+a_{j1} &a_{i2}+a_{j2} &... &a_{in}+a_{jn}\\ ...&...&...&...\\ a_{j1} &a_{j2} &...&a_{jn}\\ ...&...&...&...\\ a_{n1} &a_{n2} &... &a_{nn} \end{matrix} \right| a11...ai1...aj1...an1a12...ai2...aj2...an2.....................a1n...ain...ajn...ann = a11...ai1+aj1...aj1...an1a12...ai2+aj2...aj2...an2.....................a1n...ain+ajn...ajn...ann
推论 有两行相等的行列式为0

行列式的加法

性质5 两同阶行列式,第k行(列)元素不同,其余各行元素对应相同,则可相加,即第k行元素对应相加,其他元素不变
∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . b i 1 b i 2 . . . b i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ + ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . c i 1 c i 2 . . . c i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∣ a 11 a 12 . . . a 1 n . . . . . . . . . . . . b i 1 + c i 1 b i 2 + c i 1 . . . b i n + c i 1 . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \left| \begin{matrix} a_{11} &a_{12} &... &a_{1n}\\ ...&...&...&...\\ b_{i1} &b_{i2} &... &b_{in}\\ ...&...&...&...\\ a_{n1} &a_{n2} &... &a_{nn} \end{matrix} \right| +\left| \begin{matrix} a_{11} &a_{12} &... &a_{1n}\\ ...&...&...&...\\ c_{i1} &c_{i2} &... &c_{in}\\ ...&...&...&...\\ a_{n1} &a_{n2} &... &a_{nn} \end{matrix} \right|=\left| \begin{matrix} a_{11} &a_{12} &... &a_{1n}\\ ...&...&...&...\\ b_{i1}+c_{i1} &b_{i2}+c_{i1} &... &b_{in}+c_{i1}\\ ...&...&...&...\\ a_{n1} &a_{n2} &... &a_{nn} \end{matrix} \right| a11...bi1...an1a12...bi2...an2...............a1n...bin...ann + a11...ci1...an1a12...ci2...an2...............a1n...cin...ann = a11...bi1+ci1...an1a12...bi2+ci1...an2...............a1n...bin+ci1...ann
推论 某一行(列)是其余行(列)乘倍数再相加,行列式为0

行列式的乘法

性质6 A,B都是n阶方阵,则有|AB|=|A|×|B|

准上三角行列式

定理1 设A1,A2都是方阵,*代表任意
∣ A 1 ∗ 0 A 2 ∣ = ∣ A 1 ∣ × ∣ A 2 ∣ \left| \begin{matrix} A_1&*\\ 0&A_2 \end{matrix} \right|=|A_1|×|A_2| A10A2 =A1×A2

2.4余子式行列式的展开式

余子式与代数余子式

定义1 元素对应的余子式 划掉元素aij所在的行和列得到的行列式,记作Mij

​ 元素对应的代数余子式 符号(-1)i+j×对应的余子式,记作Aij

利用代数余子式展开行列式

​ 行列式按任意一列(j列)展开
∣ a 11 . . . a 1 j . . . a 1 n . . . . . . . . . . . . . . . a i 1 . . . a i j . . . a i n . . . . . . . . . . . . . . . a n 1 . . . a n j . . . a n n ∣ = a 1 j A 1 j + a 2 j A 2 j + … + a n j A n j \left| \begin{matrix} a_{11}&... &a_{1j} &... &a_{1n}\\ ...&...&...&...&...\\ a_{i1} &...&a_{ij} &...&a_{in}\\ ...&...&...&...&...\\ a_{n1} &...&a_{nj} &... &a_{nn} \end{matrix} \right|=a_{1j}A_{1j}+a_{2j}A_{2j}+…+a_{nj}A_{nj} a11...ai1...an1...............a1j...aij...anj...............a1n...ain...ann =a1jA1j+a2jA2j++anjAnj
​ 如果元素aij的上下(左右)全是0

∣ a 11 . . . 0 . . . a 1 n . . . . . . . . . . . . . . . a i 1 . . . a i j . . . a i n . . . . . . . . . . . . . . . a n 1 . . . 0 . . . a n n ∣ = a i j A i j \left| \begin{matrix} a_{11}&... &0 &... &a_{1n}\\ ...&...&...&...&...\\ a_{i1} &...&a_{ij} &...&a_{in}\\ ...&...&...&...&...\\ a_{n1} &...&0 &... &a_{nn} \end{matrix} \right|=a_{ij}A_{ij} a11...ai1...an1...............0...aij...0...............a1n...ain...ann =aijAij
推论 行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和等于0

替换定理

用(b1,b2,…,bn 替换第j行(a1,a2,…,an),则bi与ai对应的代数余子式相同

2.5伴随矩阵与逆矩阵

矩阵可逆的充要条件

定理1 矩阵A可逆的充要条件是其行列式|A|≠0

伴随矩阵

定义1 矩阵Ann的伴随矩阵是A的代数余子矩阵的转置矩阵,记为A*

​ 即,A的伴随矩阵也是一个n×n的矩阵,其中第i行第j列元素是A的关于第j行第i列的代数余子式

伴随矩阵与逆矩阵的关系

定理2 若|A|≠0,那么
A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A
推论 AA*=A*A=|A|E

​ |A-1|=1/|A|

2.5克拉默(Cramer)法则

克拉默法则1 线性方程组的根

​ 含有n个未知量的线性方程组
{ a 11 x 1 + a 12 x 2 + . . . . + a 1 n = b 1 a 21 x 1 + a 12 x 2 + . . . . + a 2 n = b 2 . . . . . . . . . a m 1 x 1 + a m 2 x 2 + . . . . + a m n = b m \begin{equation} \left\{ \begin{array}{lr} a_{11}x_1+a_{12}x_2+....+a_{1n}=b_1\\ a_{21}x_1+a_{12}x_2+....+a_{2n}=b_2\\ .........\\ a_{m1}x_1+a_{m2}x_2+....+a_{mn}=b_m \end{array} \right. \end{equation} a11x1+a12x2+....+a1n=b1a21x1+a12x2+....+a2n=b2.........am1x1+am2x2+....+amn=bm
​ 的系数矩阵A的行列式不等于0,即
∣ a 11 a 12 . . . a 1 n . . . . . . a n 1 a n 2 . . . a n n ∣ ≠ 0 \left| \begin{matrix} a_{11} &a_{12} &... &a_{1n}\\ ... & & &...\\ a_{n1} &a_{n2} &... &a_{nn} \end{matrix} \right|≠0 a11...an1a12an2......a1n...ann =0
​ 那么,方程组有唯一解
x 1 = ∣ A 1 ∣ ∣ A ∣ , x 2 = ∣ A 2 ∣ ∣ A ∣ , . . . , x n = ∣ A n ∣ ∣ A ∣ x_1=\frac{|A_1|}{|A|},x_2=\frac{|A_2|}{|A|},...,x_n=\frac{|A_n|}{|A|} x1=AA1,x2=AA2,...,xn=AAn

​ 其中Aj(j=1,2,…,n)是把系数矩阵A中的第j列的元素用方程组右端的常数项替换得到的矩阵,即
A j = { a 11 . . . a 1 , j − 1 b 1 a 1 , j + 1 . . . a 1 n a 21 . . . a 2 , j − 1 b 2 a 2 , j + 1 . . . a 2 n . . . . . . . . . . . . . . . . . . . . . a n 1 . . . a n , j − 1 b n a n , j + 1 . . . a n n } A_j=\left\{ \begin{matrix} a_{11} &... &a_{1,j-1} &b_1 &a_{1,j+1} &... &a_{1n} \\ a_{21} &... &a_{2,j-1} &b_2 &a_{2,j+1} &... &a_{2n} \\ ... &... &... &...&...&...&...\\ a_{n1} &... &a_{n,j-1} &b_n &a_{n,j+1} &... &a_{nn} \\ \end{matrix} \right\} Aj= a11a21...an1............a1,j1a2,j1...an,j1b1b2...bna1,j+1a2,j+1...an,j+1............a1na2n...ann

法则推论

定理2 若非齐次线性方程组AX=B有唯一解的充要条件是其系数矩阵的行列式|A|≠0

定理3 齐次线性方程组AX=0只有零解的充要条件是其系数矩阵的行列式|A|≠0

​ 有非零解的充要条件是其系数矩阵的行列式|A|=0

范德蒙(VanderMonde)行列式

每一列都是等比数列的行列式称为范德蒙行列式
∣ 1 1 1 . . . 1 a 1 a 2 a 3 . . . a n a 1 2 a 2 2 a 3 2 . . . a n 2 . . . . . . . . . . . . a 1 n − 1 a 2 n − 1 a 3 n − 1 . . . a n n − 1 ∣ = ∏ 1 ≤ j < i ≤ n ( x i − x j ) = ( a 2 − a 1 ) ( a 3 − a 1 ) . . . ( a n − a 1 ) \left| \begin{matrix} 1 &1 &1 &... &1\\ a_1 &a_2 &a_3 &... &a_n\\ a_1^2 &a_2^2 &a_3^2 &... &a_n^2\\ ... &... &... & &...\\ a_1^{n-1} &a_2^{n-1} &a_3^{n-1} &... &a_n^{n-1} \end{matrix} \right|=\prod_{1\leq j<i \leq n}(x_i-x_j)= (a_2-a_1)(a_3-a_1)...(a_n-a_1) 1a1a12...a1n11a2a22...a2n11a3a32...a3n1............1anan2...ann1 =1j<in(xixj)=(a2a1)(a3a1)...(ana1)

  • 24
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值