9.spark自适应查询-AQE之动态调整Join策略

概述

broadcast hash join 类似于 Spark 共享变量中的广播变量,Spark join 如果能采取这种策略,那join 的性能是最好的

  • 自适应查询AQE(Adaptive Query Execution)
    • 动态调整Join策略
      • 原理
      • 实战
    • 动态优化倾斜的 Join
      • 原理
      • 默认环境配置
      • 修改配置

动态调整Join策略

实际上在生产中,特别是工厂中的局限性,表设计的时候,不是那么合理,导致这这种情况,很少见,很难被调整。

原理

AQE 可以将 sort-merge join 转成 broadcast hash join ,条件是当join 表小于自适应 broadcast hash join 的阀值。
开启了自适应查询执行机制之后,可以在运行时根据最精确的数据指标重新规划join策略,实现动态调整join策略。
看以下图:
在这里插入图片描述
后续测试过程中,可以看 spark sql 的执行图。

属性名称默认值解释版本
spark.sql.adaptive.localShuffleReader.enabledtrue当值为true,且spark.sql.adaptive.enabled也为true时,Spark尝试不需要shuffle分区时,使用本地的shuffle读取器读取shuffle数据,例如:在将 sort-merge 转换成 broadcast-hash join 之后3.0.0
spark.sql.adaptive.autoBroadcastJoinThreshold(none)为表配置最大的字节数,能优化成 broadcast join,通过设置此配置为-1,可以禁用 broadcast ,默认值与 spark.sql.autoBroadcastJoinThreshold 相同3.2.0
spark.sql.autoBroadcastJoinThreshold10MB同上1.1.0

当所有的 shuffle partitions 都小于阀值, AQE 将 sort-merge join 转成 shuffled hash join ;最大阀值配置:spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold

属性名称默认值解释版本
spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold0为每个分区配置最大的字节数,能够构建 local hash map,如果这个值不小于 spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold并所有的分区不大于这个配置,join选择更倾向于使用 shuffled hash join,而不是 sort merge join3.2.0

实战

执行的 sql

select count(*) from xx where dt ='2023-06-30' and workorder='011002118525' ;
## 同样的表相连
select * from (select * from xx  where dt ='2023-06-30' and workorder='011002118525') as a
left join  xx as b  on b.dt ='2023-06-30' and b.workorder='011002118525' and  a.id = b.id  ;

在这里插入图片描述
由上图,三百多万的数据,肯定超过10MB了,所以是 sort merge join
在这里插入图片描述
在这里插入图片描述
修改 sql 如下:

select	* from (select id from xx where dt = '2023-06-30' and workorder='011002118525' ) as a join xx as b on a.id = b.id and b.dt = '2023-06-30' and b.unitid = 'H8TGWJ035ZY0000431';

在这里插入图片描述

动态优化倾斜的 Join

原理

数据倾斜严重,将严重影响 join 查询的性能。该功能动态处理在 sort-merge join 倾斜数据时,将其分为大小差不多的任务。当同是启用 spark.sql.adaptive.enabledspark.sql.adaptive.skewJoin.enabled 时,动态优化倾斜 这个功能将生效。

属性名称默认值解释版本
spark.sql.adaptive.skewJoin.enabledtrue当同是启用 spark.sql.adaptive.enabled动态优化倾斜 这个功能将生效3.0.0
spark.sql.adaptive.skewJoin.skewedPartitionFactor5如果分区的大小大于此因子乘以分区大小的中值,并且也大于spark.sql.adaptive.skewJoin.strakedPartitionThresholdInBytes,则该分区被视为偏斜。3.2.0
spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes256MB如果分区的字节大小大于此阈值,并且也大于spark.sql.adaptive.skewJoin.strakedPartitionFactor乘以分区大小中值,则该分区被视为偏斜。理想情况下,此配置应设置为大于spark.sql.adaptive.advisoryPartitionSizeInBytes3.0.0

假设有两个表 t1t2,其中表t1中的P0分区里面的数据量明显大于其他分区,默认的执行情况是这样的,看这个图:
在这里插入图片描述

t1表中p0分区的数据比p1\p2\p3这几个分区的数据大很多,可以认为t1表中的数据出现了倾斜
当t1和t2表中p1、p2、p3这几个分区在join的时候基本上是不会出现数据倾斜的,因为这些分区的数据相对适中。但是P0分区在进行join的时候就会出现数据倾斜了,这样会导致 join 的时间过长

动态优化倾斜的 join 机制会把P0分区切分成两个子分区P0-1和P0-2,并将每个子分区关联到表t2的对应分区P0,看这个图:
在这里插入图片描述
t2表中的P0分区会复制出来两份相同的数据,和t1表中切分出来的P0分区的数据进行 join 关联。
这样相当于就把t1表中倾斜的分区拆分打散了,最终在 join 的时候就不会产生数据倾斜了。

实战

todo: 以后如果遇到,再补充上

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流月up

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值