双重差分法(DID)最全数据和模型代码大全


在这里插入图片描述

数据下载地址

点击这里下载数据

数据指标说明

做政策评估之前首先要知晓政策的类型,我们需要根据不同的数据结构和政策类型采用不同的评估方法,并反复检验该方法的适用性。我们可以将一个国家或地区的政策分为以下几种,不同的政策类型刚好对应了不同的评估方法:其中双重差分法应用时,这类政策往往是在一些地区或者行业做政策试点,如果试点的效果比较理想,则可以在全国层面推广,反之则不推广,一次性全铺开的政策并不适用于DID分析。双重差分法的基本思想就是通过对政策实施前后处理组和控制组之间差异来反映政策的实施效果。

一、DID模型大全

在这里插入图片描述
二、DID数据大合集
在这里插入图片描述

项目备注

本资源部分自主研发,部分来源于网络。
来源于网络的资源版权归出版社或原作者所有,仅供学习,请勿用于商业。

数据下载地址

点击这里下载数据

PSM-DID即Propensity Score Matching and Difference-in-Differences,是一种结合了倾向得分匹配(PSM)与双重差分(DID)两种方法的技术,在经济学社会科学领域被广泛应用于评估项目干预效果或政策变化的影响。 ### 倾向得分匹配 (PSM) 这种方法用来解决样本选择偏差的问题。当研究对象不是随机分配给处理组对照组时可能出现这种偏差。通过估计一个单位接受治疗的概率——这个概率被称为倾向得分,可以创建出更相似的比较群体来减少混淆因素带来的影响。 ### 双重差分 (DID) 此方法旨在衡量随时间推移而发生的事件对特定群体的效果。它利用的是实验前后的数据对比以及受试者之间是否存在显著差异的信息。具体来说,就是计算处理前后两期的变化量之差,并将其归因为所考察的因素。 ### PSM-DID 结合应用 两者结合起来能够更好地控制不可观测的选择效应其他混杂变量。先用PSM找到最接近实际条件下的配对案例,之后再运用DID去测量这些经过筛选的数据点之间的长期趋势变动情况。这样不仅可以提高估计精度还可以增强因果关系解释力。 #### 实现方式 实现PSM-DID通常需要借助统计软件包完成,例如Stata、R或其他支持高级计量分析功能的语言环境。以下是简化的流程概述: - 收集并整理好包括协变量在内的面板数据; - 利用Logistic回归或者其他分类算法构建倾向分数模型以预测个体属于哪个群组的可能性; - 对照组中寻找与处理组成员具有相同或相近倾向值的对象形成匹配集合; - 报告最终的结果同时考虑进行敏感度测试确保结论稳定可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.Android安卓科研室.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值