DID会固定年份吗_双重差分(DID)操流程及代码

e8256d3d4caae2f59bb5b515fb582585.png

01

简介

d8eb334b54589d84751a51a8ffb72dd7.gif

现代计量经济学和统计学的发展为我们的研究提供了可行的工具。倍差法来源于计量经济学的综列数据模型,是政策分析和工程评估中广为使用的一种计量经济方法。主要是应用于在混合截面数据集中,评价某一事件或政策的影响程度。该方法的基本思路是将调查样本分为两组,一组是政策或工程作用对象即“作用组”,一组是非政策或工程作用对象即“对照组”。根据作用组和对照组在政策或工程实施前后的相关信息,可以计算作用组在政策或工程实施前后某个指标(如收入)的变化量(收入增长量),同时计算对照组在政策或工程实施前后同一指标的变化量。然后计算上述两个变化量的差值(即所谓的“倍差值”)。这就是所谓的双重差分估计量(Difference in Differences,简记DD或DID),因为它是处理组差分与控制组差分之差。该法最早由Ashenfelter(1978)引入经济学,而国内最早的应用或为周黎安、陈烨(2005)。

常用的倍差法主要包括双重倍差法和三重倍差法。双重差分法(Difference-in-difference,DID)有几种其他的称谓:倍差法、差分再差

### 关于双重差分模型(DID)在Stata中实现高维聚类 双重差分模型(Difference-in-Differences, DID)是一种常用的因果推断方法,尤其适用于面板数据分析。当涉及到高维聚类时,可以利用Stata的强大功能来处理复杂的数据结构。 #### 数据准备 为了应用双重差分模型,在Stata中首先需要准备好数据集。假设有一个包含时间、个体以及政策实施前后观测值的数据集: ```stata use your_dataset.dta, clear xtset id time // 设置面板数据结构 ``` 这里`id`代表个体标识符而`time`表示时间戳记[^1]。 #### 安装必要的软件包 对于执行高级作如高维聚类可能需要用到额外的命令或程序包。可以通过以下方式安装这些工具: ```stata ssc install reghdfe // 安装reghdfe用于高效固定效应估计 ``` 此命令会下载并安装`reghdfe`这个非常有用的扩展模块,它能够帮助更有效地控制大量的固定效应项[^2]。 #### 构建基础DID回归模型 构建一个简单的双重差分模型如下所示: ```stata gen treated_post = treatment * post_treatment_period reg outcome_variable i.treated_post i.time i.id, vce(cluster cluster_variable) ``` 其中`treatment`是一个指示变量表明是否属于实验组;`post_treatment_period`标记了干预措施之后的时间段;最后通过交互项`i.treated_post`捕捉到因政策变化带来的影响差异[^3]。 #### 应用高维聚类调整标准误 考虑到可能存在未观察到的因素导致不同群体内存在异质性问题,则可以在上述基础上进一步引入多层嵌套式的聚类稳健的标准错误计算方法: ```stata reghdfe outcome_variable treated_post, absorb(id year) vce(cluster higher_level_cluster_variable) ``` 这段代码不仅吸收了个体(`id`)年份(`year`)层面的固定效应,还允许按照更高层次上的集群变量(higher_level_cluster_variable)来进行聚类调整,从而提高结果的有效性和可靠性[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值