一、问题描述
问题描述
西西艾弗岛上散落着 𝑛 块田地。每块田地可视为平面直角坐标系下的一块矩形区域,由左下角坐标 (𝑥1,𝑦1) 和右上角坐标 (𝑥2,𝑦2) 唯一确定,且满足 𝑥1<𝑥2、𝑦1<𝑦2。这 𝑛 块田地中,任意两块的交集面积均为 0,仅边界处可能有所重叠。
最近,顿顿想要在南山脚下开垦出一块面积为 𝑎×𝑏 矩形田地,其左下角坐标为 (0,0)、右上角坐标为 (𝑎,𝑏)。试计算顿顿选定区域内已经存在的田地面积。
输入格式
从标准输入读入数据。
输入共 𝑛+1 行。
输入的第一行包含空格分隔的三个正整数 𝑛、𝑎 和 𝑏,分别表示西西艾弗岛上田地块数和顿顿选定区域的右上角坐标。
接下来 𝑛 行,每行包含空格分隔的四个整数 𝑥1、𝑦1、𝑥2 和 𝑦2,表示一块田地的位置。
输出格式
输出到标准输出。
输出一个整数,表示顿顿选定区域内的田地面积。
样例输入
4 10 10
0 0 5 5
5 -2 15 3
8 8 15 15
-2 10 3 15
样例输出
44
样例解释
如图所示,选定区域内田地(绿色区域)面积为 44。
二、解答
方法一:写两个函数分别求其长度和高度,分别有5种情况
#include<iostream>
using namespace std;
//分五种情况求长度
int Length(int x1, int x2,int a)
{
if (x1 <= 0 && x2 > 0 && x2 <= a)
{
return x2;
}
if (x1 >= 0 && x2 <= a)
{
return x2 - x1;
}
if (x1>=0&&x1 < a && x2 >= a)
{
return a - x1;
}
if(x1<=0&&x2>=a)
{
return a;
}
if(x2<=0||x1>=a)
{
return 0;
}
}
//分五种情况求高度
int Height(int y1, int y2, int b)
{
if (y1 <= 0 && y2 > 0 && y2 <= b)
{
return y2;
}
if (y1 >= 0 && y2 <= b)
{
return y2 - y1;
}
if (y1>=0&&y1 < b && y2 >= b)
{
return b - y1;
}
if (y1 <= 0 && y2 >= b)
{
return b;
}
if (y1 >= b||y2<=0)
{
return 0;
}
}
int main()
{
int n, a, b;
cin >> n >> a >> b;
int x1, y1, x2, y2,length,height;
int area=0;
for (int i = 0; i < n; i++)
{
cin >> x1 >> y1 >> x2 >> y2;
length = Length(x1, x2, a);
height = Height(y1, y2, b);
area += length * height;
}
cout << area << endl;
return 0;
}
方法二:方法1的简化,发现规律:长=min(x2,a)-max(x1,0),宽=min(y2,b)-max(y1,0),但是注意会有小于0的情况,即没有重叠部分。
#include<iostream>
using namespace std;
int max(int m, int n)
{
if (m >n)
{
return m;
}
else
{
return n;
}
}
int min(int p, int q)
{
if (p<q)
{
return p;
}
else
{
return q;
}
}
int main()
{
int n, a, b;
cin >> n >> a >> b;
int x1, y1, x2, y2, length, height;
int area = 0;
for (int i = 0; i < n; i++)
{
cin >> x1 >> y1 >> x2 >> y2;
//长=min(x2,a)-max(x1,0),宽=min(y2,b)-max(y1,0)
//另外还要考虑到该矩形在外面的情况,即length和height小于0就说明是在外面
length = min(x2,a)-max(x1,0);
//不需要if语句该行可以写成:length =max( min(x2,a)-max(x1,0),0);
height = min(y2,b)-max(y1,0);
if(length>0&&height>0)
{ area += length * height;}
}
cout << area << endl;
return 0;
}
三、总结
本题看似简单,但是情况太多了,如果盲目地写,以我的能力写不出来,也花了我很长很长时间。最后无奈请求万能的互联网的帮助,发现可以根据长和宽的不同情况来求,非常巧妙。但是,这道题如果是放在考场,我可能大概率会做不出来,ε=(´ο`*)))唉。这也说明了我在数学方面能力的欠缺。能怎么办,继续努力吧。