CSP-CCF 202303-1 田地丈量

一、问题描述

问题描述
西西艾弗岛上散落着 𝑛 块田地。每块田地可视为平面直角坐标系下的一块矩形区域,由左下角坐标 (𝑥1,𝑦1) 和右上角坐标 (𝑥2,𝑦2) 唯一确定,且满足 𝑥1<𝑥2、𝑦1<𝑦2。这 𝑛 块田地中,任意两块的交集面积均为 0,仅边界处可能有所重叠。

最近,顿顿想要在南山脚下开垦出一块面积为 𝑎×𝑏 矩形田地,其左下角坐标为 (0,0)、右上角坐标为 (𝑎,𝑏)。试计算顿顿选定区域内已经存在的田地面积。

输入格式
从标准输入读入数据。

输入共 𝑛+1 行。

输入的第一行包含空格分隔的三个正整数 𝑛、𝑎 和 𝑏,分别表示西西艾弗岛上田地块数和顿顿选定区域的右上角坐标。

接下来 𝑛 行,每行包含空格分隔的四个整数 𝑥1、𝑦1、𝑥2 和 𝑦2,表示一块田地的位置。

输出格式
输出到标准输出。

输出一个整数,表示顿顿选定区域内的田地面积。

样例输入
4 10 10
0 0 5 5
5 -2 15 3
8 8 15 15
-2 10 3 15

样例输出
44

样例解释
如图所示,选定区域内田地(绿色区域)面积为 44。

 

二、解答

方法一:写两个函数分别求其长度和高度,分别有5种情况

#include<iostream>
using namespace std;
//分五种情况求长度
int Length(int x1, int x2,int a)
{
	if (x1 <= 0 && x2 > 0 && x2 <= a)    
	{
		return x2;
	}
	if (x1 >= 0 && x2 <= a)
	{
		return x2 - x1;
	}
	if (x1>=0&&x1 < a && x2 >= a)
	{
		return a - x1;
	}
	if(x1<=0&&x2>=a)
	{
		return a;
	}
	if(x2<=0||x1>=a)
	{
		return 0;
	}
}
//分五种情况求高度
int Height(int y1, int y2, int b)
{
	if (y1 <= 0 && y2 > 0 && y2 <= b)
	{
		return y2;
	}
	if (y1 >= 0 && y2 <= b)
	{
		return y2 - y1;
	}
	if (y1>=0&&y1 < b && y2 >= b)
	{
		return b - y1;
	}
	if (y1 <= 0 && y2 >= b)
	{
		return b;
	}
	if (y1 >= b||y2<=0)
	{
		return 0;
	}
}
int main()
{
	int n, a, b;
	cin >> n >> a >> b; 
	int x1, y1, x2, y2,length,height;
    int area=0;
	for (int i = 0; i < n; i++)
	{
		cin >> x1 >> y1 >> x2 >> y2;
		length = Length(x1, x2, a);
		height = Height(y1, y2, b);
		area += length * height;
	}
	cout << area << endl;
	return 0;
}

方法二:方法1的简化,发现规律:长=min(x2,a)-max(x1,0),宽=min(y2,b)-max(y1,0),但是注意会有小于0的情况,即没有重叠部分。

#include<iostream>
using namespace std;
int max(int m, int n)
{
	if (m >n)
	{
		return m;
	}
	else
	{
		return n;
	}
}
int min(int p, int q)
{
	if (p<q)
	{
		return p;
	}
	else
	{
		return q;
	}
}
int main()
{
	int n, a, b;
	cin >> n >> a >> b;
	int x1, y1, x2, y2, length, height;
	int area = 0;
	for (int i = 0; i < n; i++)
	{
		cin >> x1 >> y1 >> x2 >> y2;
		//长=min(x2,a)-max(x1,0),宽=min(y2,b)-max(y1,0)
		//另外还要考虑到该矩形在外面的情况,即length和height小于0就说明是在外面
		length = min(x2,a)-max(x1,0);
		//不需要if语句该行可以写成:length =max( min(x2,a)-max(x1,0),0);
		height = min(y2,b)-max(y1,0);
		if(length>0&&height>0)
		{ area += length * height;}
		
	}
	cout << area << endl;
	return 0;
}

三、总结

本题看似简单,但是情况太多了,如果盲目地写,以我的能力写不出来,也花了我很长很长时间。最后无奈请求万能的互联网的帮助,发现可以根据长和宽的不同情况来求,非常巧妙。但是,这道题如果是放在考场,我可能大概率会做不出来,ε=(´ο`*)))唉。这也说明了我在数学方面能力的欠缺。能怎么办,继续努力吧。

 

 

 

题目描述: 农夫约翰想要丈量他的 N(1≤N≤100,000)个田地的面积。他有一条长为 L(1≤L≤1,000,000)的量尺,可以用来测量在一个平面上的距离。每个田地都是一个矩形,且所有矩形的边都平行于坐标轴。每个矩形的左下角和右上角的坐标分别为 (x1,y1) 和 (x2,y2),其中 0≤x1<x2≤L,0≤y1<y2≤L。你需要编写一个程序来计算所有田地的总面积。 输入格式: 第一行包含两个整数 N 和 L。 接下来 N 行,每行包含四个整数 x1,y1,x2,y2,表示一个矩形的左下角和右上角坐标。 输出格式: 输出所有田地的总面积。 样例输入: 3 10 0 0 1 1 1 1 5 5 5 5 10 10 样例输出: 100 解题思路: 首先,根据输入的坐标信息,我们可以计算出每个矩形的面积。这个很简单,只需要将矩形的宽和高相乘即可。 然后,我们需要判断每个矩形是否与其他矩形重叠。如果重叠了,我们就需要将重叠的部分减掉。这个问题也很简单,只需要找出所有相交的矩形,计算它们重叠的面积,然后将它们的面积减掉即可。 最后,将所有矩形的面积加起来,就是所有田地的总面积了。 具体实现时,我们可以使用一个二维数组来表示每个坐标上的矩形数量。然后,我们可以对每个矩形进行遍历,找出所有与它相交的矩形,并计算它们的重叠面积。最后,将所有矩形的面积加起来即可。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值