题目
问题描述
西西艾弗岛上散落着 n 块田地。每块田地可视为平面直角坐标系下的一块矩形区域,由左下角坐标 (x1,y1) 和右上角坐标 (x2,y2) 唯一确定,且满足 x1<x2、y1<y2。这 n 块田地中,任意两块的交集面积均为 0,仅边界处可能有所重叠。
最近,顿顿想要在南山脚下开垦出一块面积为 a×b 矩形田地,其左下角坐标为 (0,0)、右上角坐标为 (a,b)。试计算顿顿选定区域内已经存在的田地面积。
输入格式
从标准输入读入数据。
输入共 n+1 行。
输入的第一行包含空格分隔的三个正整数 n、a 和 b,分别表示西西艾弗岛上田地块数和顿顿选定区域的右上角坐标。
接下来 b 行,每行包含空格分隔的四个整数 x1、y1、x2 和 y2,表示一块田地的位置。
输出格式
输出到标准输出。
输出一个整数,表示顿顿选定区域内的田地面积。
即图中 绿色部分
样例
输入
4 10 10
0 0 5 5
5 -2 15 3
8 8 15 15
-2 10 3 15
输出
44
代码
按照下图把相应区间点的横坐标和纵坐标 调整到边缘线上
(或许有更简介的代码写法,但是个人觉得好理解快速能写出来就够了)
#include<iostream>
#include<math.h>
using namespace std;
int n ,a,b;
int x1,y1,x2,y2;
int ans;
int main()
{
cin>>n>>a>>b;
while(n)
{
cin>>x1>>y1>>x2>>y2;
if(x1<0)x1=0;
else if(x1>a)x1=a;
if(y1>b)y1=b;
else if(y1<0)y1=0;
if(x2<0)x2=0;
else if(x2>a)x2=a;
if(y2>b)y2=b;
else if(y2<0)y2=0;
ans+=abs((x1-x2)*(y1-y2));
n--;
}
cout<<ans;
return 0;
}