摘要
本周主要学习了偏微分方程的定义和基本概念,算子的定义和种类,如何判断该算子是否为线性偏微分算子以及如何判断该偏微分方程的半线性、拟线性和非线性。并学习了如何用偏微分方程进行一维模型在环境中的建模。
Abstract
This week mainly learned the definition and basic concepts of partial differential equations, the definition and types of operators, how to determine whether the operator is a linear partial differential operator, and how to judge the semilinear, quasilinear and nonlinear of the partial differential equation. He also learned how to use partial differential equations to model one-dimensional models in the environment.
偏微分方程部分
1.什么样的方程可被称为偏微分方程
首先,偏微分方程的定义为:方程或式子中含有未知函数、导数或偏导数的方程即为偏微分方程。这样概括未免太过笼统,满足以下三个解释时,偏微分方程的定义能够被更好的说明:
①一个因素对另一个因素有所谓的变化率,且该变化率同其他的一些变量间有一定的比例关系。
②各个变量间有物理规律,用该类变量组成一个等式,且该式子中含有偏导数,或一个变量对另一个变量有导数的等式。
③变量本身不满足物理或者自然规律,但在微元的情况下,该变量满足物理概率或守恒律,可以使用微元分析法在微元中建立出一个积分方程,对该方程采用数学原理变成偏微分方程的形式。
2.偏微分方程中涉及的基本概念
2.1多重指标
存在向量α=(α1,......,αN),其分量αk是非负整数,这样的向量称为多重指标。对于向量和点的关系,如下图所示
对于X的α次方的解释为对应的分量的多重指标的分量指数次方。
对于两个不同的多重指标α与β中存在偏序现象,则所对应的每一个向量都有偏序现象。
2.2 算子
算子为作用在一个函数上产生另外一个函数的数学运算规律。存在分类为梯度算子、散度算子、旋度算子、偏微分算子等。其主要内容见下图:
3.污染物浓度场的一维模型
所谓的一维模型,即只有在一个方向上的污染物浓度存在梯度变化,常用与在细、长、浅河流环境中,所依赖的基本方程为质量守恒方程。由于存在一个方向上的浓度梯度变化,故可引用偏微分方程设置一个浓度关于距离位置和时间的变化函数,利用偏微分的概念建立其数学模型。主要概念同模型规律见下图:
其中的推流、分散、衰减为污染物在河流里的运动迁移形式。
总结
本周学习了部分偏微分方程的基本概念和在环境数学建模中偏微分方程的作用,经过了解学习偏微分方程,使我能够更好理解如何运用数学思想去解决问题,对于数学等学习探索将成为我目前的目标。