目录
摘要
在本周,我主要进行了关于物理信息神经网络(PINN)的学习,且对机器学习和深度学习的基本概念进行了认识学习。在Fluent案例当中,本周进行的是模拟了通过具有相同进口和出口截面面积的圆形到矩形过渡管的湍流流动,使用fluent计算值和实际值的对比,可看出其fluent的计算值和实验值拟合的较好。
Abstract
This week, I focused on learning about Physics-Informed Neural Networks (PINNs) and learned about the basic concepts of machine learning and deep learning. In the case of Fluent, this week I simulated turbulent flow through a circular to rectangular transition tube with the same inlet and outlet cross-sectional areas, and the comparison of the calculated and actual values of fluent shows that the calculated and experimental values of fluent fit well.
一、文献阅读部分
文献题目:PINN:用于解决涉及非线性偏微分方程的正问题和逆问题的深度学习框架
PINN:用于解决涉及非线性偏微分方程的正问题和逆问题的深度学习框架
1.1 提出问题
- 绝大多数最先进的机器学习技术(例如,深度/卷积/循环神经网络)缺乏鲁棒性,无法提供任何收敛性保证。
- 许多与物理和生物系统建模有关的案例,存在大量的先验知识,这些知识目前尚未在现代机器学习实践中得到利用。
1.2 PINN原理
定义:根据神经网络的输入坐标和模型参数来区分神经网络,以获得物理信息的神经网络。
这样的神经网络受到约束,必须尊重任何对称性、不变性或守恒原理,这些原理源于控制观测数据的物理定律,如一般的时变和非线性偏微分方程。如下式所示:
式中u(t, x)为隐解,N[·;λ]是由λ参数化的非线性算子,μ是RD的子集。这个设置封装了广泛的数学物理问题,包括守恒定律,扩散过程,平流-扩散-反应系统,和动力学方程。作为一个激励的例子,一维Burgers方程[13]对应于N [u;λ] = λ1uux−λ2uxx, λ = (λ1, λ2)。
1.2.1 主要目的:
1.找出一个给定的模型参数 λ,并找出其与待解函数u的关系;
2.使用何种方法可以使该参数λ可以最好的预测所需数据
1.2.3 具体函数
然后用深度神经网络逼近u(t, x),产生了一个物理信息神经网络f (t, x)。该网络可以通过应用链式法则,利用自动微分对函数的组成进行微分得到[12],它与表示u(t, x)的网络具有相同的参数,尽管由于微分算子N的作用,其激活函数不同。神经网络u(t, x)和f (t, x)之间的共享参数可以通过最小化均方误差损失来学习。
其均方误差损失函数如下所示:
其中,{ti u, xi u, ui} Nu i=1表示u(t, x)上的初始和边界训练数据,{ti f, xi f} N fi =1表示f (t, x)的搭配点。损耗MSEu对应于初始和边界数据,而MSE f在有限的搭配点集