第二十周:Fluent案例+文献阅读

目录

摘要

Abstract

一、文献阅读部分

1.1 提出问题

1.2 PINN原理

1.2.1 主要目的:

1.2.3 具体函数

1.3 例子演示(NS方程)

1.3.1 NS方程介绍

1.3.2 定义函数

1.3.3 例子简介

1.3.4 具体操作

二、Fluent案例:过渡管中的湍流

2.1几何描述部分

2.2 网格部分

2.3求解器设置

三、基本知识学习部分

3.1机器学习、深度学习基本概念

3.2N-S方程推导和湍流模型

总结


摘要

在本周,我主要进行了关于物理信息神经网络(PINN)的学习,且对机器学习和深度学习的基本概念进行了认识学习。在Fluent案例当中,本周进行的是模拟了通过具有相同进口和出口截面面积的圆形到矩形过渡管的湍流流动,使用fluent计算值和实际值的对比,可看出其fluent的计算值和实验值拟合的较好。

Abstract

This week, I focused on learning about Physics-Informed Neural Networks (PINNs) and learned about the basic concepts of machine learning and deep learning. In the case of Fluent, this week I simulated turbulent flow through a circular to rectangular transition tube with the same inlet and outlet cross-sectional areas, and the comparison of the calculated and actual values of fluent shows that the calculated and experimental values of fluent fit well.

一、文献阅读部分

文献题目:PINN:用于解决涉及非线性偏微分方程的正问题和逆问题的深度学习框架

PINN:用于解决涉及非线性偏微分方程的正问题和逆问题的深度学习框架

1.1 提出问题

  1. 绝大多数最先进的机器学习技术(例如,深度/卷积/循环神经网络)缺乏鲁棒性,无法提供任何收敛性保证。
  2. 许多与物理和生物系统建模有关的案例,存在大量的先验知识,这些知识目前尚未在现代机器学习实践中得到利用。

1.2 PINN原理

定义:根据神经网络的输入坐标和模型参数来区分神经网络,以获得物理信息的神经网络。

这样的神经网络受到约束,必须尊重任何对称性、不变性或守恒原理,这些原理源于控制观测数据的物理定律,如一般的时变和非线性偏微分方程。如下式所示:

式中u(t, x)为隐解,N[·;λ]是由λ参数化的非线性算子,μ是RD的子集。这个设置封装了广泛的数学物理问题,包括守恒定律,扩散过程,平流-扩散-反应系统,和动力学方程。作为一个激励的例子,一维Burgers方程[13]对应于N [u;λ] = λ1uux−λ2uxx, λ = (λ1, λ2)。

1.2.1 主要目的:

1.找出一个给定的模型参数 λ,并找出其与待解函数u的关系;

2.使用何种方法可以使该参数λ可以最好的预测所需数据

1.2.3 具体函数

然后用深度神经网络逼近u(t, x),产生了一个物理信息神经网络f (t, x)。该网络可以通过应用链式法则,利用自动微分对函数的组成进行微分得到[12],它与表示u(t, x)的网络具有相同的参数,尽管由于微分算子N的作用,其激活函数不同。神经网络u(t, x)和f (t, x)之间的共享参数可以通过最小化均方误差损失来学习。

其均方误差损失函数如下所示:

其中,{ti u, xi u, ui} Nu i=1表示u(t, x)上的初始和边界训练数据,{ti f, xi f} N fi =1表示f (t, x)的搭配点。损耗MSEu对应于初始和边界数据,而MSE f在有限的搭配点集合上强制执行式(2)所施加的结构。虽然在以前的研究中已经探索了使用物理定律约束神经网络的类似想法[,将它们应用于由时变非线性偏微分方程描述的更具挑战性的动态问题。

物理信息神经网络的一个关键特性是它们可以使用小数据集进行有效训练;在物理系统的研究中经常遇到的一种设置,其数据采集成本可能过高。

一般来说,自动微分,特别是反向传播算法,是目前训练深度模型的主要方法,方法是对模型的参数(例如,权重和偏差)求导,我们使用深度学习社区使用的完全相同的自动微分技术,通过对其输入坐标(即空间和时间)求导来获取物理信息神经网络,其中物理是由偏微分方程描述的。

在所有涉及偏微分方程数据驱动解的情况下,训练数据总数Nu相对较少,我们选择使用L-BFGS(一种准牛顿、全批基于梯度的优化算法)来优化所有损失函数。

对于更大的数据集,例如第4节中讨论的数据驱动模型发现示例,可以很容易地使用随机梯度下降及其现代变体来实现计算效率更高的小批量设置[36,37]。尽管没有理论保证这一过程收敛到全局最小值,但我们的经验证据表明,如果给定的偏微分方程是适定的,并且它的解是唯一的,我们的方法能够在给定足够表达的神经网络架构和足够数量的并配点N f的情况下获得良好的预测精度。

1.3 例子演示(NS方程)

选用其中关于使用PINN进行N-S方程求解的部分,用深度神经网络逼近u(t, x)。这一假设与方程,同构成了一个物理信息神经网络f (t, x)。该网络可以通过应用链式法则,利用自动微分对函数组合进行微分而得到。微分算子λ的参数转化为物理信息神经网络f (t, x)的参数。

1.3.1 NS方程介绍

纳维-斯托克斯方程描述了许多科学和工程感兴趣的物理现象。它们可以用来模拟天气、洋流、管道中的水流和机翼周围的空气流动。纳维-斯托克斯方程的完整和简化形式有助于飞机和汽车的设计、血液流动的研究、发电站的设计、污染物扩散的分析以及许多其他应用。本例子中考虑的是二维中的Navier-Stokes方程,方程如下所示:

其中u(t, x, y)表示速度场的x分量,v(t, x, y)表示y分量,p(t, x, y)表示压力。这里λ = (λ1, λ2)是未知参数。

1.3.2 定义函数

定义f (t, x, y)和g(t, x, y)为:

然后用一个有两个输出的神经网络联合逼近[ ψ(t, x, y) p(t, x, y)]。这个先前的假设连同上述的fg组成了一个物理信息神经网络 [ f (t, x, y) g(t, x, y)]。Navier-Stokes算子的参数λ以及神经网络的参数[ ψ(t, x, y) p(t, x, y) ]和[ f (t, x, y) g(t, x, y)]可以通过最小化均方误差损失来训练.

1.3.3 例子简介

该例子考虑圆柱不可压缩流动的原型问题,雷诺数Re = u∞D/ν的不同区域表现出丰富的动力学行为和跃迁。假设无量纲自由流速度u∞= 1,圆柱体直径D = 1,运动粘度ν = 0.01,系统表现出周期性稳态行为,其特征是圆柱体尾迹中不对称的涡脱落模式,称为卡曼涡街。

1.3.4 具体操作

首先使用光谱/hp元素求解器NekTar来进行求解,与PINN预测值进行对比;域通过412个三角形网格对该空间进行离散化处理,并且在每个网格内,解近似为十阶分层半正交雅可比多项式展开的线性组合[47]。在左边界施加均匀的自由流速剖面,在圆柱体下游25直径处设置为右边界,且将右边界条件设置为压力出口。设定在[−15,25]×[−8,8]为上下边界,使其周期性进行演算,直至域内情况趋于稳态。结果如下图所示:

上图所示。Navier-Stokes方程:上:Re = 100时不可压缩流和动态涡脱落经过圆柱体。所述时空训练数据对应于所描述的圆柱体尾迹中的矩形区域。下图分别为流向和横向速度分量u(t, x, y)和v(t, x,t)的训练数据点位置。

接下来使用PINN进行预测,根据定义,该压力场只能识别到一个常数。为此,我们通过对完整的高分辨率数据集随机抽样,创建了一个训练数据集。为了突出我们的方法从分散和稀缺的训练数据中学习的能力,我们选择N = 5000,对应于仅占可用数据总数的1%,如图3(b)所示。还绘制了模型训练后预测速度分量u(t, x, y)和v(t, x, y)的代表性快照。这里使用的神经网络架构由9层组成,每层有20个神经元。预测结果如下图所示:

由上图可知,即使在训练数据被噪声破坏的情况下,物理信息的神经网络(PINN)也能以很高的准确率正确识别未知参数λ1和λ2。具体来说,对于无噪声的训练数据,估计λ1和λ2的误差分别为0.078%和4.67%。即使训练数据被1%的不相关高斯噪声破坏,预测仍然保持鲁棒性,λ1和λ2的误差分别为0.17%和5.70%。其具体代码可在原文献附录中找到。

二、Fluent案例:过渡管中的湍流

  本案例模拟了通过具有相同进口和出口截面面积的圆形到矩形过渡管的湍流流动。管道壁的曲率引起了强烈的压力驱动的横向流动,并在管道短侧壁附近发展成反向旋转的涡对。由于流场的对称性,只对管道的四分之一进行了建模。截面5位于进口下游23m处。

2.1几何描述部分

该模型几何参数如下:

物性参数

几何尺寸

边界条件

密度:1kg/m3

进口半径:1m

进口速度:1 m/s

粘度:5.13*10-6 kg/m s

管道长度:35m

对fluent计算的管道中心线上的压力系数和截面5上的压力系数和实验值进行对比。验证fluent计算的准确性。

2.2 网格部分

下图为模型网格划分情况,可看到多为结构化网格,该类网格可提供更高的计算精度,但所需消耗的计算机资源也会过多。

2.3求解器设置

模型选择为雷诺应力模型(RSM),该模型将粘度随时间的变化率同时均值联系起来,适用于处理脉动项。具体参数如下所示:

修改流体材料物性参数为密度为1,粘度为5.13x106 的空气,如下所示:

后设置边界条件,进口速度设置为1,湍流设置为水力直径,强度为0.1%,水力直径为2m,雷诺应力分量设置为10-6:

设置出口为自由出流,流速加权为1,对称边界设置为两个。

求解方法选用SIMPLE,压力项选用PRESTO!,求解格式采用二阶迎风格式,设置完毕后进行混合初始化,进行500次迭代计算。

计算结果如下:可以看出fluent的计算值和实验值拟合的较好。

原案例中的图:

案例演示完毕。

三、基本知识学习部分

本周进行了关于机器学习、深度学习的基本概念的学习,同时加强了关于N-S方程的详细推导过程的学习,以及湍流模型的学习。具体学习内容见下图

3.1机器学习、深度学习基本概念

3.2N-S方程推导和湍流模型

总结

通过文献阅读,对于PINN的基本理论和数学依据有了初步了解,对于其圆柱绕流部分的NS方程也进行了详细学习,可以使我在以后的文献阅读中更好的理解其操作模式。在下周我会进行关于流体力学的学习,通过学习基本的流体力学理论来更好理解藏在CFD中的理论知识。

  • 19
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值