自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 神经网络组植物分类学习规划与本周进展综述18

训练时会显示进度,最后在yolov5/runs/train/exp/weights里生成best.pt(最好的模型)和last.pt(最后一轮模型)。不用自己 “写代码”,YOLOv5 官网已经做好了所有核心代码,只需要改几个配置文件 + 运行现成的命令。右键文件夹→“共享”,生成链接发给组员,设置 “可编辑” 权限,两人就能共同上传 / 下载文件了。03_代码与模型(存 YOLOv5 代码、训练好的.pt 模型、配置文件)标注好的图片、训练好的模型、写的代码,传上去后两个人随时能下载最新版本;

2025-12-07 22:19:56 589

原创 神经网络组植物分类学习规划与本周进展综述17

训练时会显示进度,最后在yolov5/runs/train/exp/weights里生成best.pt(最好的模型)和last.pt(最后一轮模型)。不用自己 “写代码”,YOLOv5 官网已经做好了所有核心代码,只需要改几个配置文件 + 运行现成的命令。右键文件夹→“共享”,生成链接发给组员,设置 “可编辑” 权限,两人就能共同上传 / 下载文件了。03_代码与模型(存 YOLOv5 代码、训练好的.pt 模型、配置文件)标注好的图片、训练好的模型、写的代码,传上去后两个人随时能下载最新版本;

2025-11-30 21:02:27 921

原创 神经网络组植物分类学习规划与本周进展综述16

如果新标注的类别名称和原有classes.txt里的完全相同(比如都是 “man”“bus” 等),标注工具会直接调用已有classes.txt中的类别,不会生成新的classes.txt,标注完成后只需将新标签和图片按之前的目录结构(labels/train、images/train等)存放即可,训练时能自动合并。通过验证集的表现,我们可以判断模型是否 “学懂了”(比如会不会把狗误判成猫),以及是否出现了 “过拟合”(比如只记住了训练集的细节,换张图就识别不准)。作用:让模型学习知识。

2025-11-23 21:04:28 691

原创 神经网络组植物分类学习规划与本周进展综述15

训练时会显示进度,最后在yolov5/runs/train/exp/weights里生成best.pt(最好的模型)和last.pt(最后一轮模型)。1.一人负责 “数据准备”:用 LabelMe 标注图片,运行json2yolo.py转换标签,整理到data文件夹,确保路径正确;2.另一人负责 “代码运行”:安装环境,修改plant_soil.yaml配置文件,运行训练和测试命令,把训练好的模型传到共享网盘。标注好的图片、训练好的模型、写的代码,传上去后两个人随时能下载最新版本;

2025-11-16 21:37:43 824 1

原创 神经网络组植物分类学习 - 阶段学习规划14

目标:将 YOLO 分割结果转换成蒸散量脚本可读取的格式。• 组员 A:标注 25 张影像 + 整理训练集。• 组员 B:标注 25 张影像 + 整理验证集。组员 B:对接 QGIS 组 + 标注工具学习。目标:用分割结果跑通蒸散量脚本,得到初步结果。组员 A:环境搭建 + 数据格式调研。组员 A:模型训练 + 监控指标。组员 A:运行脚本 + 排查错误。组员 B:结果验证 + 记录问题。四、分割结果与蒸散量脚本对接。组员 A:处理分割结果格式。组员 B:对接蒸散量脚本组。

2025-11-06 17:34:25 331

原创 神经网络组植物分类学习规划与本周进展综述13

images:存放图片·train:训练集图片·val:验证集图片。·labels:存放标签·train:训练集标签文件,要与训练集图片名称--对应·val:验证集标签文件,要与验证集图片名称一-对应。

2025-11-01 22:15:23 1112

原创 神经网络组植物分类学习规划与本周进展综述12

1.2 基于torch.hub的检测方法。

2025-10-26 18:04:49 339

原创 神经网络组植物分类学习规划与本周进展综述11

而在检测速度方面,前传耗时体现模型前向推理的时间成本,每秒帧数FPS(Frames Per Second)表示单位时间内模型可处理的图像数量,浮点运算量(FLOPS)反映模型计算复杂度,这些指标共同用于评估模型在实际应用中的高效性,是处理一张图像所需要的浮点运算数量,跟具体软硬件没有关系,可以公平的比较不同算法之间的检测速度。目标框回归技术 在 YOLOv5 中,锚框给出目标宽高的初始值,目标框回归的核心是求解目标真实宽高与初始宽高的偏移量,同时确定预测框在图像中的位置。二、YOLO算法的基本思想。

2025-10-19 20:31:23 795

原创 神经网络组植物分类学习规划与本周进展综述10

在目标检测中,通常会设置一个 IoU 阈值(如 0.5),当预测框与真实框的 IoU 大于该阈值时,才认为检测是正确的。同时,还会给出置信度得分(Confidence score),用于衡量模型对该类别判断的确定程度,得分越高,表明模型对该类别预测越有把握。由于我的电脑只有集成核显,没有独立显卡,所以在安装 PyTorch 的时候,选择 CPU 版本是合适的,这样能确保在电脑硬件条件下,顺利使用 PyTorch 进行开发和运行相关程序。例如,在视频目标检测中,较高的 FPS 可以保证视频的流畅检测。

2025-09-25 19:30:17 753

原创 神经网络组植物分类学习规划与本周进展综述09

是一类用于调整模型参数(如权重、偏置等)的算法,其核心目标是最小化(或最大化)模型的损失函数(Loss Function),从而提升模型的预测性能。(1)梯度的本质是 “参数对损失的影响”,比如 “W2 变化一点,L 会变多少?假设你考试得分(L)取决于 “做题速度”(A)和 “正确率”(B),而 “做题速度” 又取决于 “平时练习量”(W1),“正确率” 取决于 “知识点掌握度”(W2)。(微积分中的基础规则):把复杂的 “间接影响” 拆成多个 “局部影响” 的乘积,从后往前一步步算。

2025-09-14 11:51:32 144

原创 神经网络组植物分类学习-本周学习规划08

现阶段复习的核心是: “让大家回忆起‘CNN 如何处理图像’”,能看懂 YOLOv5 里的卷积层是干嘛的、知道训练时 “反向传播调参” 就是 CNN 的训练逻辑,来衔接后续学习。YOLOv5 本质是 “深度学习框架(如 PyTorch)+ 目标检测 / 分割模型” 的结合体。:它的核心结构(特征提取的卷积层、特征融合的残差连接、预测的检测头)全是基于 CNN 设计的,之前学的 CNN 基础(卷积、池化、激活函数)完全能支撑理解 YOLOv5 的原理,不需要额外补其他模型知识。

2025-09-12 17:10:14 306

原创 神经网络组植物分类学习规划与本周进展综述07

线性层(全连接层)是神经网络中基础且常用的组件,能将输入数据的特征进行线性变换。在图像任务里,由于图像原始是多维张量(如 CIFAR-10 数据集的,代表批量、通道、高、宽 ),需先处理成线性层可接收的一维特征向量,再通过线性层映射到目标维度(如分类任务的类别数 )。3.2 线性层代码实战#线性层#模型定义部分#线性层的作用是将输入特征映射到 10 个输出,对应 CIFAR-10 的 10 个类别。

2025-06-26 21:03:11 1764

原创 神经网络组植物分类学习规划与本周进展综述06

加载并预处理图像数据,转换为张量并归一化。使用简单的卷积神经网络对图像进行特征提取。通过 TensorBoard 可视化原始输入图像和卷积后的特征图,帮助理解卷积操作的效果2.3.2 处理 自定义图像数据集(无人机数据)--卷积可视化实战import os# 自定义数据集类 - 处理无分类的图像文件夹# 获取所有图像文件路径# 读取图像并转换为float类型# 处理单通道图像(转换为3通道)# 无分类标签,返回0作为占位符# 图像预处理 - 增大尺寸以提高可视化清晰度。

2025-06-19 21:45:14 1706

原创 神经网络组植物分类学习规划与本周进展综述05

1.1 ToTensor转换# 1. ToTensor转换1.1.1 功能:将 PIL 图像转换为 PyTorch 张量(Tensor),并可视化结果。1.1.2 PIL 图像VSPyTorch 张量(1)PIL 图像(原始食材)形式:类似一张 “真实的照片”,以像素矩阵存储,但格式是 Python 的 PIL.Image 对象。特点人类友好:可以直接用 img.show() 显示图像。操作受限:只能用 PIL 库的方法(如 resize()、rotate())处理。

2025-06-12 21:35:13 1789

原创 神经网络组植物分类学习规划与本周进展综述04

然后,启动 TensorBoard 并指定日志目录,它会读取这些日志文件,将数据解析并以可视化的形式展示在网页界面上(通常通过在浏览器中访问本地地址,如 http://localhost:6006/ )。通过对 Tensor 进行各种数学运算(如加法、乘法、矩阵乘法等),以及利用自动求导机制计算梯度,不断调整模型参数,以达到模型性能优化的目的。描述了它的维度信息,比如二维 Tensor 可表示矩阵,三维 Tensor 常用于表示图像(在 PyTorch 中,图像的 Tensor 通常是。

2025-06-05 22:19:29 994

原创 神经网络组植物分类学习规划与本周进展综述03

利用经验改善系统自身的性能(目前主要研究智能数据分析,因为经验是以数据存储的)。

2025-05-29 22:07:37 993

原创 神经网络组植物分类具体课程学习规划02

围绕目标检测算法(如 YOLO )的相关内容,包括 IOU 指标计算、mAP 指标计算、YOLO 算法整体思路解读、检测算法要得到的结果、整体网络架构解读、位置损失计算、置信度误差与优缺点分析,以及 V2、V3 版本细节改进等内容。学习目的:掌握数据加载(Dataset、DataLoader)、CNN 构建(卷积层、池化层)、训练流程(损失函数、优化器)。图像分类 ):学习如学习率调整、早停法等技巧,应对训练中过拟合、不稳定问题。学习数据增强(如旋转、缩放、亮度调整),解决航拍图像的视角变化问题。

2025-05-28 21:14:06 835

原创 神经网络组植物分类学习规划与本周进展综述01

研究方法:利用无人机采集黑龙江省帽儿山实验林场的高光谱数据,进行预处理后,分别用基于高斯核的支持向量机、随机森林、k - 近邻 3 种机器学习算法建立基于全波段高光谱数据的树种分类模型,又基于不同波段选择方法对全波段数据降维后构建分类模型,最后联合波段选择方法与高光谱图像纹理特征构建树种分类模型。该数据集包含一百种植物叶子的分类图像,有三个特征文件,如,形状(shape),边缘(margin),纹理(texture)。1.在对无人机数据处理的步骤充分了解的基础上,学习相关的深度学习课程进行简单的植被分类。

2025-05-22 21:28:32 1137 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除