神经网络组植物分类具体课程学习规划02

一、周志华机器学习起步(易理解,课时短)

课程链接:

http://【周志华老师亲讲-西瓜书全网最详尽讲解-1080p高清原版《机器学习初步》】https://www.bilibili.com/video/BV1gG411f7zX?vd_source=07776bcd40f076b709f6cff52aac2717

二、PyTorch 实战与调优(《我是土堆》重点学习内容

1.必须掌握的课程核心内容(优先级最高)

学习目的:掌握数据加载(Dataset、DataLoader)、CNN 构建(卷积层、池化层)、训练流程(损失函数、优化器)。

直接用预训练模型(如 ResNet50)微调,快速实现分类功能。

(1)数据处理(直接关联无人机数据)
  • P6. Dataset 类代码实战
    掌握自定义数据集,适配无人机图像格式(如 GeoTIFF、JPEG)。
  • P9. Transforms 的使用(全部)
    学习数据增强(如旋转、缩放、亮度调整),解决航拍图像的视角变化问题。
  • P12. DataLoader 的使用
    实现高效批处理,提高训练速度。
(2) CNN 模型构建(核心技术)
  • P13-18. 神经网络层讲解(卷积层、池化层、激活函数等)
    理解 CNN 的基本组件,这是图像分类的核心。
  • P19. 搭建小实战和 Sequential 的使用
    动手实现简单 CNN,熟悉模型结构。
  • P26. 现有网络模型的使用及修改
    直接调用预训练的 ResNet/VGG,通过迁移学习快速适配无人机数据。
(3)模型训练与评估(跑通代码的关键)
  • P20-22. 损失函数、优化器、训练循环
    掌握交叉熵损失、Adam 优化器,实现完整的训练流程。
  • P23. 利用 GPU 训练
    加速训练过程(若有 GPU 资源)。
  • P25. 完整的模型验证套路
    计算准确率、精确率等指标,评估模型性能。

附:

主要学习的课程截图:

课程链接:

 http://【PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】】https://www.bilibili.com/video/BV1hE411t7RN?vd_source=07776bcd40f076b709f6cff52aac2717

2.可选择性学习的内容(优先级中等)

  • P1-2. 环境配置
    若已完成 PyTorch 环境搭建,可跳过。
  • P7-8. torchvision 数据集
    作为练习可参考,但最终需转向无人机数据。
  • P24. 模型保存与读取
    完成训练后再学习,不影响代码跑通。
  • P27. 开源项目
    学有余力时参考,了解工程化实现。

3.可暂时跳过的内容(优先级低)

  • P3-4. Python 编辑器配置
    若已熟悉 PyCharm 等工具,可跳过。
  • P10-11. 其他 Transforms
    非核心功能,可在需要时再学习。
  • P28-30. 目标检测、分割等高级任务
    超出当前 “分类” 任务范围。

三、选择性补充李宏毅的实战部分(1 周内)

1.学习目的:

CNN和图像分类部分

  • 架构选择:李宏毅会对比不同 CNN 架构的优缺点,选择最适合无人机数据的模型(如 MobileNet 适合边缘设备部署)。
  • 调参技巧:提供学习率、批量大小等超参数的经验法则,避免盲目尝试。
  • 问题诊断:讲解过拟合、欠拟合的现象和解决方案,提高模型稳定性。

2.优先重点学习(李宏毅课程对应章节)

1CNN 架构理解相关

卷积网络参数定义:明确卷积网络里各类参数(如卷积核大小、数量等)含义与设定方式,利于搭建或调整适合无人机数据的 CNN 模型。

网络流程解读:透彻掌握神经网络运行流程,更好理解模型处理无人机图像机制。

Resnet 论文解读、Resnet 网络架构解读 :深入剖析 ResNet 架构细节,ResNet 是常用预训练模型基础,便于借助迁移学习处理无人机数据。

李宏毅课程中关于 ResNet/VGG 架构设计部分(对应CNN 专题 ):理解不同网络架构特点,知晓其适配航拍数据原因,如 ResNet 残差连接优势。

2数据处理相关

分类任务数据集定义与配置:学会针对分类任务合理定义、配置无人机图像数据集。

图像增强的作用 、数据预处理与数据增强模块:掌握图像增强手段及原理,增加无人机图像数据多样性,提升模型泛化力。

Batch 数据制作:掌握批量数据制作方法,提升数据加载与训练效率。

3训练优化相关

迁移学习的目标 、迁移学习策略:了解迁移学习原理和实施策略,利用预训练模型加速无人机数据分类模型训练。

优化器模块配置:熟悉不同优化器特性与配置,选合适优化器提升训练效果。

实现训练模块:学习完整训练模块搭建,保障正确训练无人机数据分类模型。

训练结果与模型保存:掌握保存训练成果和模型方法,方便后续评估与使用。

加载模型对测试数据进行预测:学会加载训练好的模型并对无人机测试数据预测,完成分类全流程。

李宏毅课程中训练技巧部分(对应 图像分类 ):学习如学习率调整、早停法等技巧,应对训练中过拟合、不稳定问题。

4暂不学习(与分类任务关联小)

围绕目标检测算法(如 YOLO )的相关内容,包括 IOU 指标计算、mAP 指标计算、YOLO 算法整体思路解读、检测算法要得到的结果、整体网络架构解读、位置损失计算、置信度误差与优缺点分析,以及 V2、V3 版本细节改进等内容 。这些主要用于目标检测任务,和当前分类任务核心目标差异大,现阶段可先搁置。

课程链接:

【【2025版】李宏毅机器学习系列课程!涵盖机器学习,深度学习、神经网络算法、强化学习、计算机视觉、自然语言处理、大模型等多个人工智能核心知识点!就怕你学不会!】https://www.bilibili.com/video/BV1YsqSY8EiW?vd_source=07776bcd40f076b709f6cff52aac2717

四、直接实战

用小土堆的代码框架,结合李宏毅的技巧,快速迭代模型。

遇到具体问题(如精度低、训练慢)时,针对性查阅李宏毅课程中的对应方法。

五、Yolo模型复现做分类

最终目的: 深度学习基础-pytorch框架-Yolo模型复现做分类

Yolo模型复现做基础分类主要课程还是在小土堆里面,课程链接见上文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值