一、周志华机器学习起步(易理解,课时短)
课程链接:
二、PyTorch 实战与调优(《我是土堆》重点学习内容 )
1.必须掌握的课程核心内容(优先级最高)
学习目的:掌握数据加载(Dataset、DataLoader)、CNN 构建(卷积层、池化层)、训练流程(损失函数、优化器)。
直接用预训练模型(如 ResNet50)微调,快速实现分类功能。
(1)数据处理(直接关联无人机数据)
- P6. Dataset 类代码实战
掌握自定义数据集,适配无人机图像格式(如 GeoTIFF、JPEG)。 - P9. Transforms 的使用(全部)
学习数据增强(如旋转、缩放、亮度调整),解决航拍图像的视角变化问题。 - P12. DataLoader 的使用
实现高效批处理,提高训练速度。
(2) CNN 模型构建(核心技术)
- P13-18. 神经网络层讲解(卷积层、池化层、激活函数等)
理解 CNN 的基本组件,这是图像分类的核心。 - P19. 搭建小实战和 Sequential 的使用
动手实现简单 CNN,熟悉模型结构。 - P26. 现有网络模型的使用及修改
直接调用预训练的 ResNet/VGG,通过迁移学习快速适配无人机数据。
(3)模型训练与评估(跑通代码的关键)
- P20-22. 损失函数、优化器、训练循环
掌握交叉熵损失、Adam 优化器,实现完整的训练流程。 - P23. 利用 GPU 训练
加速训练过程(若有 GPU 资源)。 - P25. 完整的模型验证套路
计算准确率、精确率等指标,评估模型性能。
附:
主要学习的课程截图:
课程链接:
2.可选择性学习的内容(优先级中等)
- P1-2. 环境配置
若已完成 PyTorch 环境搭建,可跳过。 - P7-8. torchvision 数据集
作为练习可参考,但最终需转向无人机数据。 - P24. 模型保存与读取
完成训练后再学习,不影响代码跑通。 - P27. 开源项目
学有余力时参考,了解工程化实现。
3.可暂时跳过的内容(优先级低)
- P3-4. Python 编辑器配置
若已熟悉 PyCharm 等工具,可跳过。 - P10-11. 其他 Transforms
非核心功能,可在需要时再学习。 - P28-30. 目标检测、分割等高级任务
超出当前 “分类” 任务范围。
三、选择性补充李宏毅的实战部分(1 周内)
1.学习目的:
CNN和图像分类部分
- 架构选择:李宏毅会对比不同 CNN 架构的优缺点,选择最适合无人机数据的模型(如 MobileNet 适合边缘设备部署)。
- 调参技巧:提供学习率、批量大小等超参数的经验法则,避免盲目尝试。
- 问题诊断:讲解过拟合、欠拟合的现象和解决方案,提高模型稳定性。
2.优先重点学习(李宏毅课程对应章节)
(1)CNN 架构理解相关
卷积网络参数定义:明确卷积网络里各类参数(如卷积核大小、数量等)含义与设定方式,利于搭建或调整适合无人机数据的 CNN 模型。
网络流程解读:透彻掌握神经网络运行流程,更好理解模型处理无人机图像机制。
Resnet 论文解读、Resnet 网络架构解读 :深入剖析 ResNet 架构细节,ResNet 是常用预训练模型基础,便于借助迁移学习处理无人机数据。
李宏毅课程中关于 ResNet/VGG 架构设计部分(对应CNN 专题 ):理解不同网络架构特点,知晓其适配航拍数据原因,如 ResNet 残差连接优势。
(2)数据处理相关
分类任务数据集定义与配置:学会针对分类任务合理定义、配置无人机图像数据集。
图像增强的作用 、数据预处理与数据增强模块:掌握图像增强手段及原理,增加无人机图像数据多样性,提升模型泛化力。
Batch 数据制作:掌握批量数据制作方法,提升数据加载与训练效率。
(3)训练优化相关
迁移学习的目标 、迁移学习策略:了解迁移学习原理和实施策略,利用预训练模型加速无人机数据分类模型训练。
优化器模块配置:熟悉不同优化器特性与配置,选合适优化器提升训练效果。
实现训练模块:学习完整训练模块搭建,保障正确训练无人机数据分类模型。
训练结果与模型保存:掌握保存训练成果和模型方法,方便后续评估与使用。
加载模型对测试数据进行预测:学会加载训练好的模型并对无人机测试数据预测,完成分类全流程。
李宏毅课程中训练技巧部分(对应 图像分类 ):学习如学习率调整、早停法等技巧,应对训练中过拟合、不稳定问题。
(4)暂不学习(与分类任务关联小)
围绕目标检测算法(如 YOLO )的相关内容,包括 IOU 指标计算、mAP 指标计算、YOLO 算法整体思路解读、检测算法要得到的结果、整体网络架构解读、位置损失计算、置信度误差与优缺点分析,以及 V2、V3 版本细节改进等内容 。这些主要用于目标检测任务,和当前分类任务核心目标差异大,现阶段可先搁置。
课程链接:
四、直接实战
用小土堆的代码框架,结合李宏毅的技巧,快速迭代模型。
遇到具体问题(如精度低、训练慢)时,针对性查阅李宏毅课程中的对应方法。
五、Yolo模型复现做分类
最终目的: 深度学习基础-pytorch框架-Yolo模型复现做分类
Yolo模型复现做基础分类主要课程还是在小土堆里面,课程链接见上文