前缀和与差分

前缀和与差分

一.前缀和

1.概念

前缀和是应用于顺序表的算法,指的是某序列前n项的和,对于一些场景可以显著的提高运算效率。

2.朴素做法与前缀和算法
  1. 部分和:

​ 给定一个数组,求出某一段连续子数组的和。

​ 如果是朴素做法,就是对于求部分和的区间,枚举所有数进行相加:

int sum = 0;
for(int i = left; i <= right; i++){
    sum += arr[i];
}
return sum;

我们可以发现

如果数组长度为n,这样做的时间复杂度就是O(n),如果执行m次,询问m次,时间复杂度就会变成O(n*m)。

这显然不是我们想要的,我们需要对其优化

  1. 前缀和

    如果我们使用sum数组去存储对应坐标到起始位置的数据和呢?

    也就是sum[i]代表的是前 i 项的和。

    对应的公式为;
    s u m [ i ] = a r r [ 0 ] + a r r [ 1 ] + . . . . a r r [ i ] sum[i] = arr[0] + arr[1] + .... arr[i] sum[i]=arr[0]+arr[1]+....arr[i]

s u m [ i ] = s u m [ i − 1 ] + a r r [ i ] sum[i] = sum[i - 1] + arr[i] sum[i]=sum[i1]+arr[i]

  1. 边界问题

    有了对应的公式,不难发现,当我们去求 i下标 的前缀和时,需要用到下标 i-1;

    那么就会涉及到,如果i = 0怎么办,这样的边界问题

    我们的边界值应该为 sum[-1] = 0;

    可以理解为 sum[-1] 是一项都没有累加,自然值应该为0;

    那么处理边界可以是单写一个函数,也可以是从 i = 1开始遍历

    • 单写一个函数:

      int preSum(int n){
          if(n == -1){
              return 0;
          }
          return sum[n];
      }
      
    • 从i = 1遍历

      for(int i = 1;i <= n;i++){
      	sum[i] = sum[i - 1] + arr[i];
      }
      
  2. 部分和

    求的sum数组,再看之前说的

    求下标left到right之间的部分和:

    例如left = 2 , right = 5
    r e s = a r r [ 2 ] + a r r [ 3 ] + a r r [ 4 ] + a r r [ 5 ] res = arr[2] + arr[3] + arr[4] + arr[5] res=arr[2]+arr[3]+arr[4]+arr[5]


r e s = s u m [ 5 ] − s u m [ 1 ] = a r r [ 1 ] + a r r [ 2 ] + . . . + a r r [ 5 ] − a r r [ 1 ] res = sum[5] - sum[1] = arr[1] + arr[2] + ... + arr[5] - arr[1] res=sum[5]sum[1]=arr[1]+arr[2]+...+arr[5]arr[1]
所以可以得到 部分和为sum[right] - sum[left - 1];

这样当我们把所有的前缀和求出来,后续查询就都是O(1)了

3.前缀积

与前缀和一样,我们可以数组 prod代表前缀积

prod[i] 代表前 i 项的积

操作与前缀和基本一致

但是这个时候的边界处理有所变化:

  • 单写一个函数:

    int preProd(int n){
        if(n == -1){
            return 1;
        }
        return prod[n];
    }
    
  • 从i = 1遍历

    for(int i = 1;i <= n;i++){
    	prod[i] = prod[i - 1] * arr[i];
    }
    
4.例题

通过一道例题加深理解;

给你一个数组 nums 。数组「动态和」的计算公式为:runningSum[i] = sum(nums[0]…nums[i])

请返回 nums 的动态和。

示例 1:

输入:nums = [1,2,3,4]
输出:[1,3,6,10]
解释:动态和计算过程为 [1, 1+2, 1+2+3, 1+2+3+4] 。

示例 2:

输入:nums = [1,1,1,1,1]
输出:[1,2,3,4,5]
解释:动态和计算过程为 [1, 1+1, 1+1+1, 1+1+1+1, 1+1+1+1+1] 。

示例 3:

输入:nums = [3,1,2,10,1]
输出:[3,4,6,16,17]

使用前缀和的写法:创建前缀和数组,为了避免边界问题,使用第一个方法进行处理;

class Solution {
public:
    int prefixsum(int n,vector<int> &sum){
        if(n == -1){
            return 0;
        }
        return sum[n];
    }
    vector<int> runningSum(vector<int>& nums) {
        int n = nums.size();
        vector<int> sum(n,0);
        for(int i = 0;i<n;i++){
            sum[i] = prefixsum(i -1,sum) + nums[i];
        }
        return sum;
    }
};

二.差分

如果给你一个数组,我们要在这个数组的基础上,在[l,r]区间每个数据都加x,那么我们要如何做呢?

我们依旧可以以此遍历,在这个区间内就加x,不在就跳过。

但是如果是多个操作呢,很显然这样就比较慢了,而且操作也比较多。

我们就可以使用差分的思想。

1.差分数组

首先给一个原数组a:

a[1],a[2],a[3],a[4]…a[n]

然后我们构造另外一个数组b:

b[1],b[2],b[3],b[4]…b[n]

要求是:a[n] = b[1] + b[2] + … + b[n]

也就是说,a数组是b数组的前缀和数组,反过来也可以说b数组是a数组的差分数组

如何差分数组呢?

a[0] = 0; b [0] = 0;

b[1] = a[1] - a[0] = a[1] - 0;

b[2] = a[2] - a[1] = a[2] - b[1]; -> a[2] =b[0] + b[1] + b[2];

b[3] = a[3] - a[2] = a[3] - b[0] - b[1] - b[2] -> a[3] = b[0] + b[1] + b[2] + b[3]

所以可以得出

b[i] = a[i] - a[i-1];

我们只要有b数组,就可以在O(n)的时间内的出a数组,但是这个和一开始的问题有什么关联呢?

2.反推差分的操作

给定一个差分数组[0,0,0,0,0,0],在坐标2-4都加上2

在这里插入图片描述

那么进行反推得到进行操作后的差分数组:

在这里插入图片描述

可以发现得到的数组为[0,0,2,0,0,-2];

其实这样也很好理解,因为我们后面求的结果是前缀和数组,那么只需要在数据改动的开始位置 +改变的数据

但是这个是有范围的,肯定要在其他区间恢复数据的。所以在改动结束位置的后一个 -改变的数据,就可以恢复;

所以差分的操作的伪代码如下:

//cf为差分数组
cf[left] += x;
cf[right + 1] -= x;

再进行前缀和即可

例题:

牛客DP37 【模板】差分

描述

给你一个长度为n的正数数组a1,a2,…an.

接下来对这个数组进行m次操作,每个操作包含三个参数l,r,k,代表将数组中al*,…*ar部分都加上k。

请输出操作后的数组。

输入描述:

第一行包含两个整数n和m。
第二行包含n个整数表示a1​,…an
接下来是m行,每行三个整数,分别代表每次操作的参数l,r,k.

输出描述:

输出1行,表示m次操作后的a1,…an

示例1

输入:

3 2
1 2 3
1 2 4
3 3 -2

输出:

5 6 1

代码为:

#include <iostream>
using namespace std;

const int N = 100010;
long long arr[N];
long long cf[N];

int main() {
    int n , m;
    while(cin>>n>>m){
        if(n == 0 && m == 0){
            break;
        }
        for(int i = 1;i<=n;i++){
            cin>>arr[i];
            cf[i] = arr[i] - arr[i-1];
        }
        int left,right,x;
        while(m--){
            cin>>left>>right>>x;
            cf[left] += x;
            cf[right + 1] -= x;
        }
        for(int i = 1;i<=n;i++){
            cf[i] += cf[i - 1];
            cout<<cf[i]<<" ";
        }
    }
   return 0;
}

一维的前缀和与差分就是这样了

  • 42
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
前缀和和分是一类常用的算法,它们常常被用来优化一些区间操作的问题,如求区间和、区间最大值/最小值等等。下面我们将分别介绍前缀和和分的定义、用法和常见问题。 ## 前缀前缀和,顾名思义,就是把前面所有数的和都求出来,用一个数组存起来,以便之后的查询。 ### 定义 给定一个长度为 $n$ 的序列 $a$,令 $s_i = \sum_{j=1}^{i}a_j$,则 $s$ 称为序列 $a$ 的前缀和数组。 ### 用法 前缀和的主要作用是用 $O(1)$ 的时间复杂度求出一个区间 $[l,r]$ 的和,即 $s_r - s_{l-1}$。这是因为 $s_r$ 存储了序列从 $1$ 到 $r$ 的和,而 $s_{l-1}$ 存储了序列从 $1$ 到 $l-1$ 的和,因此区间 $[l,r]$ 的和可以通过两个前缀和相减计算得出。 前缀和的时间复杂度为 $O(n)$,因为需要遍历一遍序列求出前缀和数组。但是,如果有多个查询需要求区间和,那么使用前缀和可以将每次查询的时间复杂度降低到 $O(1)$。 ### 代码实现 下面是使用前缀和求区间和的代码实现: ```cpp vector<int> a; // 原序列 vector<int> s(a.size() + 1); // 前缀和数组 // 计算前缀和 for (int i = 1; i <= a.size(); i++) { s[i] = s[i - 1] + a[i - 1]; } // 查询区间 [l, r] 的和 int sum = s[r] - s[l - 1]; ``` ## 分和前缀和相反,它主要用来对区间进行修改。我们可以利用分数组进行区间修改,并最终得到修改后的序列。 ### 定义 给定一个长度为 $n$ 的序列 $a$,令 $d_i = a_i - a_{i-1}$($d_1 = a_1$),则 $d$ 称为序列 $a$ 的分数组。 ### 用法 分的主要作用是对区间进行修改。假设我们需要将区间 $[l,r]$ 的数加上 $k$,我们可以将分数组的 $d_l$ 加上 $k$,将 $d_{r+1}$ 减去 $k$。这样,对分数组求前缀和,就可以得到修改后的序列。 具体来说,我们可以按照以下步骤进行区间修改: 1. 对分数组的 $d_l$ 加上 $k$; 2. 对分数组的 $d_{r+1}$ 减去 $k$; 3. 对分数组求前缀和,得到修改后的序列。 分的时间复杂度为 $O(n)$,因为需要遍历一遍序列求出分数组。但是,如果有多次区间修改需要进行,那么使用分可以将每次修改的时间复杂度降低到 $O(1)$。 ### 代码实现 下面是使用分进行区间修改的代码实现: ```cpp vector<int> a; // 原序列 vector<int> d(a.size() + 1); // 分数组 // 计算分数组 for (int i = 1; i < a.size(); i++) { d[i] = a[i] - a[i - 1]; } // 修改区间 [l, r],将数加上 k d[l] += k; d[r + 1] -= k; // 对分数组求前缀和,得到修改后的序列 for (int i = 1; i < d.size(); i++) { a[i] = a[i - 1] + d[i]; } ``` ## 常见问题 ### 1. 分数组的长度是多少? 分数组的长度应该比原序列长度多 1,因为 $d_1 = a_1$。 ### 2. 什么情况下使用前缀和?什么情况下使用分? 如果需要进行多次区间查询,那么使用前缀和可以将每次查询的时间复杂度降低到 $O(1)$;如果需要进行多次区间修改,那么使用分可以将每次修改的时间复杂度降低到 $O(1)$。 ### 3. 前缀和和分的本质区别是什么? 前缀和和分都是用来优化区间操作的算法,它们的本质区别在于: - 前缀和是通过预处理前缀和数组来优化区间查询; - 分是通过预处理分数组来优化区间修改。 ### 4. 前缀和和分能否同时使用? 当然可以。如果需要同时进行区间查询和修改,我们可以先使用分数组对区间进行修改,然后再对分数组求前缀和,得到修改后的序列。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值