一、判断是否为环形链表
1、思路给分析
环形链表是什么?看下面图片
环形链表如果让头指针进入遍历会形成死循环。因为他的尾链的next会指向之前的节点形成环。
我们如果想知道这个链表是否尾换链表,我们首先需要知道他是循环的,遍历不会结束代码会卡掉。这里我们就需要引入快慢指针了
快慢指针是两个指针,一个指针在前一个指针在后,这是在遍历的时候才需要,在遍历开始时两个指针都指向头指针,然后快指针每次走2步,慢指针每次走1步(快指针也可以走n>=2,慢指针只要比快指针慢就行)
有了快慢指针的概念,试想一下,如果快慢指针都进入了环里,他们之间的相对距离是一直改变的,直到相对距离为0时,快指针追上了慢指针。在想一下,如果时普通链表的话,如果这个链表不结束慢指针是永远追不上快指针的。快指针的地址等于慢指针的地址就能证明这是一个环链表。
2、证明快慢指针会相遇
这里我们假设快指针(fast)每次移动两个节点、慢指针(slow)每次移动一个节点。
fast进环了,而slow还没有进环。
slow也进环了, 假设他们的相对距离为n,那么每次移动就会变成N=n-1*x(x是移动次数),当N等于零时他们相遇。
那有小伙伴有疑问了,如果说快指针一次移动3个节点,慢指针一次移动1个节点呢?
下面我们假设快指针移动x个节点每次,慢指针移动y个节点每次。他们的相对距离为n=c(x+y)(c为移动次数)。n不是偶数就是奇数,进环之后fast追slow每一次追x-y个距离a,a不是偶数就是奇数。下面分为4中情况
相距距离n | 追击距离a |
偶数 | 偶数 |
偶数 | 奇数 |
奇数 | 奇数 |
奇数 | 偶数 |
这里就需要引入最大公因数和最小公约数,最坏的结果就是n*a的总追击距离,所以不论x和y是多少都来可以追上。
下面练习可以在LeedCode中
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* struct ListNode *next;
* };
*/
bool hasCycle(struct ListNode *head)
{
struct ListNode *fast=head;
struct ListNode *slow=head;
while(fast && fast->next)//(这里不能写成while(fast),因为我们还需要判断fast的下个节点是否为空指针)
{
slow=slow->next;
fast=fast->next->next;
if(fast==slow)
{
return true;
}
}
return false;
}
二、找到环形链表的入环点
在找换链表的入环点前我要先强调几点
起始点 | head |
起始点->入口点的距离 | L |
入口点->相遇点的距离 | X |
环的总长度 | C |
我们知道fast走过的距离是slow的两倍,当fast和slow都入环了,fast追击slow的距离就变成了C-X了,所以slow在环里走不到一圈就被追上了。但是fast可能走了很多圈因为2(C-X)可能大于C也可能小于C,所以这里我们就可以得到一个等式2(L+X)=L+X+a*C简化后得到L+X=a*C,这里我们可以得到,一个指针1从起始点开始走,一个指针2从相遇点开始走,当指针2走了a圈后指针1和指针2相遇。如果将等式写成L=(a-1)C+X+C,我们可以理解为指针1从起始点开始走,指针2从相遇点开始走会在入口相遇。
下面练习可以在LeedCode中
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* struct ListNode *next;
* };
*/
struct ListNode *detectCycle(struct ListNode *head)
{
struct ListNode *fast,*slow;
//首先我们找到相遇点
fast=slow=head;
while(fast && fast->next)
{
slow=slow->next;
fast=fast->next->next;
if(slow==fast)
{
struct ListNode *meet;
struct ListNode *head;
while(meet!=head)
{
meet=meet->next;
head=head->next;
}
return meet;
}
}
return NULL;
}