比特币10年价格数据分析(2014-2025)(上)

一、项目背景

    自2009年比特币诞生以来,在市场情绪,政策变化,技术进步等多重因素共同作用下,他经历了频繁的大幅价格波动,这些波动不仅体现了投资者对比特币价值的认知变化,同时也映射出全球经济环境和技术发展的脉络。这种“疯狂”的市场行为提供了一个极佳的实验场,可以帮助我们更深入地理解金融市场中的风险管理和投资策略。

二、数据来源与说明

(一)数据来源

  1. 数据源 1:本数据集包含2014-2025的比特币美元价格数据,具体包含比特币每日的开盘价,最高价,最低价,收盘价以及成交量等关键信息。

(二)数据说明

  1. Date :日期,比特币的交易日期
  2. Open :开盘价
  3. High :最高价
  4. Low :最低价
  5. Close :收盘价
  6. Volume :成交量

三、数据处理

(一)缺失值处理

# 数据处理
# 检查缺失值
print("缺失值统计:")
print(data.isnull().sum())

# 处理缺失值(这里使用前向填充)
data = data.fillna(method='ffill')

(二)异常值处理

# 检查数据中的异常值(通过箱线图可视化)
plt.figure(figsize=(12, 8))
data.plot(kind='box', subplots=True, layout=(3, 2), sharex=False, sharey=False, figsize=(12, 8))
plt.suptitle('Boxplots of Bitcoin Data Features')
plt.show()

               Open          High           Low         Close     Adj Close  \
count   3413.000000   3413.000000   3413.000000   3413.000000   3413.000000   
mean   14755.133911  15099.732436  14383.721317  14765.981975  14765.981975   
std    16297.574402  16687.924194  15859.785405  16299.471806  16299.471806   
min      176.897003    211.731003    171.509995    178.102997    178.102997   
25%      922.067017    937.525024    910.416992    921.789001    921.789001   
50%     8290.759766   8470.988281   8110.770020   8293.868164   8293.868164   
75%    24373.457030  25020.458980  23927.910160  24402.818360  24402.818360   
max    67549.734380  68789.625000  66382.062500  67566.828130  67566.828130   

             Volume  
count  3.413000e+03  
mean   1.663294e+10  
std    1.907392e+10  
min    5.914570e+06  
25%    1.689680e+08  
50%    1.180170e+10  
75%    2.696772e+10  
max    3.509679e+11  

    (1)所有列的计数均为3413,表明数据集中有3413个数据点,且在处理缺失值后各列数据数量保持一致。

    (2)不同价格相关列,均值均在14000-15000美元左右,而成交量均值为1.663294×10^10,显示出比特币交易的活跃程度和价格大大致水平。

    (3)价格相关列的标准差较大,说明比特币价格波动幅度较大。成交量的标准差也很大,反映出交易量在不同时间的差异明显。

    (4)最小值较低,尤其是早期比特币价格;最大值则显示出比特币在某些时期达到了非常高的价格和交易量。25%,50%,75%分位数可以帮助了解数据的分布情况,比如50%分位数能体现数据的中间水平。

四、数据分析

(一)价格波动与趋势分析

# 绘制价格走势
plt.figure(figsize=(12, 6))
plt.plot(data.index, data['Close'], label='Adjusted Close Price')
plt.title('Bitcoin Price Trend (2014 - 2024)')
plt.xlabel('Date')
plt.ylabel('Price (USD)')
plt.legend()
plt.show()

# 计算价格的每日收益率
data['Returns'] = data['Close'].pct_change()

# 绘制收益率分布
plt.figure(figsize=(10, 6))
sns.histplot(data['Returns'].dropna(), bins=50, kde=True)
plt.title('Distribution of Bitcoin Daily Returns')
plt.xlabel('Daily Returns')
plt.ylabel('Frequency')
plt.show()

    可以看出比特币几个在此期间波动剧烈,2017-2018以及2020-2021年经历了显著的上涨和下跌行情,2024年价格又有明显回升趋势。

    娴熟比特币每日收益率大多集中在0附近,说明多数时间比特币每日价格变动幅度较小,但分布图尾部较厚,意味着偶尔会出现较大幅度的涨跌情况,及价格波动的极端情况也时有发生。

(二)成交量与市场波动关系分析

# 计算价格的标准差作为市场波动指标
data['Volatility'] = data['Returns'].rolling(window=30).std() * np.sqrt(30)

# 删除包含缺失值的行,确保所有列数据长度一致
data_without_nan = data.dropna(subset=['Volume', 'Volatility', 'Returns'])

# 绘制成交量与市场波动的关系
plt.figure(figsize=(12, 6))
plt.scatter(data_without_nan['Volume'], data_without_nan['Volatility'])
plt.title('Relationship between Volume and Market Volatility')
plt.xlabel('Volume')
plt.ylabel('Volatility')
plt.show()

    (1)大部分数据点集中在成交量较低,波动性也相对较低的区域,说明大多数情况下,低成交量伴随着较低的市场波动;

    (2)右侧有一些离群点,表明在某些时候,高成交量会伴随着较高的市场波动性,但整体上两者之间未呈现明显的线性相关关系。

价格异常波动检测

1.价格异常波动(Price Outliers):

# 价格异常波动检测

# 使用Z-score检测价格异常值

z_scores = stats.zscore(data_without_nan['Returns'])

outliers = data_without_nan[(np.abs(z_scores) > 3)]

print("Price Outliers (Returns with z-score > 3 or < -3):")

print(outliers[['Returns']])
Price Outliers (Returns with z-score > 3 or < -3):
             Returns
Date                
2014-11-12  0.151936
2015-01-13 -0.156593
2015-01-14 -0.211449
2015-01-15  0.178217
2015-01-28 -0.112193
2015-08-18 -0.181788
2015-11-03  0.116914
2015-11-10 -0.114233
2016-01-15 -0.153321
2016-05-28  0.119494
2017-01-05 -0.122410
2017-01-06 -0.109711
2017-01-11 -0.143136
2017-03-18 -0.114896
2017-07-17  0.154724
2017-07-20  0.239361
2017-08-05  0.123285
2017-09-14 -0.187411
2017-09-15  0.152956
2017-09-18  0.134618
2017-10-12  0.128547
2017-12-06  0.199283
2017-12-07  0.252472
2017-12-22 -0.124730
2017-12-26  0.147805
2017-12-30 -0.116265
2018-01-05  0.117333
2018-01-16 -0.168548
2018-02-05 -0.159688
2018-02-06  0.114838
2018-04-12  0.132160
2018-11-19 -0.133732
2018-11-28  0.114298
2019-04-02  0.173560
2019-05-11  0.129478
2019-05-13  0.120840
2019-05-19  0.127418
2019-06-27 -0.140857
2019-07-16 -0.130100
2019-09-24 -0.113960
2019-10-25  0.155763
2020-03-12 -0.371695
2020-03-13  0.119281
2020-03-19  0.181878
2020-04-29  0.127318
2021-01-21 -0.132837
2021-02-08  0.187465
2021-05-12 -0.133217
2021-05-19 -0.137661
2021-05-24  0.113182
2021-06-09  0.115691
2021-06-21 -0.112655
2021-09-07 -0.110622
2022-02-04  0.116978
2022-02-28  0.145412
2022-05-09 -0.110464
2022-06-13 -0.159747
2022-11-09 -0.143490

    通过 Z-score 方法检测出了比特币每日收益率中绝对值大于 3 的异常值,并列出了这些异常值对应的日期和收益率数值。这些日期代表着比特币价格出现较大波动的时刻,例如 2020 年 3 月 12 日收益率为 -0.371695,表明当天比特币价格大幅下跌。

2.成交量异常值(Volume Outliers):

# 成交量异常值检测

# 使用Z-score检测成交量异常值

volume_z_scores = stats.zscore(data_without_nan['Volume'])

volume_outliers = data_without_nan[(np.abs(volume_z_scores) > 3)]

print("Volume Outliers (Volume with z-score > 3 or < -3):")

print(volume_outliers[['Volume']])
Volume Outliers (Volume with z-score > 3 or < -3):
                  Volume
Date                    
2020-03-13  7.415677e+10
2021-01-03  7.866524e+10
2021-01-04  8.116348e+10
2021-01-06  7.528943e+10
2021-01-07  8.476214e+10
2021-01-08  8.810752e+10
2021-01-10  7.998075e+10
2021-01-11  1.233206e+11
2021-01-12  7.477328e+10
2021-01-21  7.564307e+10
2021-01-22  7.720727e+10
2021-01-28  7.651716e+10
2021-01-29  1.178946e+11
2021-02-08  1.014672e+11
2021-02-09  9.180985e+10
2021-02-10  8.730109e+10
2021-02-11  8.138891e+10
2021-02-12  7.655504e+10
2021-02-15  7.706990e+10
2021-02-16  7.704958e+10
2021-02-17  8.082055e+10
2021-02-22  9.205242e+10
2021-02-23  1.061025e+11
2021-02-26  3.509679e+11
2021-04-07  7.564530e+10
2021-04-14  7.745178e+10
2021-04-16  8.429301e+10
2021-04-18  9.746887e+10
2021-04-22  7.479863e+10
2021-04-23  8.666867e+10
2021-05-12  7.521540e+10
2021-05-13  9.672115e+10
2021-05-17  7.490364e+10
2021-05-19  1.263581e+11
2021-05-20  8.828194e+10
2021-05-21  8.205162e+10
2021-05-23  7.846927e+10
2022-01-07  8.419661e+10
2022-11-08  1.189925e+11
2022-11-09  1.029052e+11
2022-11-10  8.320228e+10

    同样使用 Z-score 方法检测出成交量中的异常值,并列出了异常值对应的日期和成交量数值。可以看到这些异常值主要集中在 2021 年,说明在这一年中,比特币市场的交易量出现了多次显著高于正常水平的情况 。

五、结论与建议

(一)结论

    通过对比特币 2014 - 2024 年数据的分析,发现比特币价格呈现出剧烈波动的总体趋势,在 2017 - 2018 年以及 2020 - 2021 年期间经历了显著的涨跌。每日收益率分布集中在 0 附近,但尾部较厚,表明多数时间价格变动小,但偶尔会有大幅涨跌。成交量与市场波动的关系并不呈明显线性相关,多数低成交量对应低波动,少数高成交量伴随高波动。此外,检测出了价格收益率和成交量的一些异常值,反映出市场的不稳定性。

(二)建议

  1. 策略优化建议:对于交易平台的营销策略,可在比特币价格波动较大且成交量高的时段,加强市场宣传和推广,吸引更多投资者。因为这些时段市场关注度高,潜在投资需求大。运营策略上,建立针对价格和成交量异常波动的风险预警机制,当出现类似检测出的异常值情况时,及时通知用户,保障交易安全,增强用户信任度。
  2. 未来发展建议:从市场拓展角度,可向对加密货币接受度逐渐提高的新兴市场进军,如一些东南亚国家。利用比特币价格波动带来的投资机会,吸引当地投资者。在新业务探索上,考虑开发与比特币波动性相关的金融衍生品,如波动率指数期货,为投资者提供更多风险管理和投资获利的途径,推动业务多元化发展 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值