《黑神话:悟空》Steam 游戏用户评论数据分析报告

一、项目背景

    《黑神话:悟空》作为一款备受瞩目的游戏,其在Steam平台上的用户评论数据蕴含着丰富的信息。通过对这些数据进行深入分析,外贸可以了解玩家对游戏的满意度,游戏的优缺点以及玩家的行为模式等。这有助于游戏开发者制定针对性的决策,如优化游戏内容,改进营销策略,提升玩家体验等,从而提高游戏的市场竞争力和用户留存率。

    本次数据分析的目标是全面挖掘Steam游戏的用户评论数据的价值,为游戏的后续发展提供有力的支持。

二、数据来源与处理

(一)数据来源

  1. 数据源 1:数据存储于"D:\study\wukong_data\steam.xlsx"文件中。这些数据为我们分析玩家对游戏的评价,行为模式以及游戏的受欢迎程度等提供了基础。
  2. 数据内容

    数据包含了用户的评测信息,主要字段有:

评测有价值:表示有多少人觉得该评测有价值。

评测很欢乐:表示有多少人觉得该评测很欢乐。

评测内容:用户对游戏的具体评价内容。

评测时间:评测发布的时间。

评测标签:如 “推荐” 或 “不推荐”。

游戏时长:用户在游戏中投入的总时长。

评测人:发表评测的用户名称。

评测人拥有产品:评测人账户内拥有的产品数量。

(二)数据处理

  1. 数据清洗

    在进行数据分析之前,需要对数据进行清洗和预处理,以确保数据的质量和一致性。

import numpy as np
import pandas as pd
import re

# 导入数据
df1 = pd.read_excel(r'D:\\study\\wukong_data\\steam.xlsx')

# 从“评测有价值”字段中提取数字,去除文本描述部分
df1["评测有价值"] = df1["评测有价值"].astype(str).str.extract('(\d+)')

# 从“评测很欢乐”字段中提取数字,去除文本描述部分
df1["评测很欢乐"] = df1["评测很欢乐"].astype(str).str.extract('(\d+)')

# 从“游戏时长”字段中提取具体的时长数值,去除“总时数”等文字
df1["游戏时长"] = df1["游戏时长"].astype(str).str.extract(r'(\d+\.\d+)')

# 自定义函数用于提取日期
def extract_date(x):
    match = re.search(r'发布于:(\d+月 \d+ 日)', x)
    if match:
        return match.group(1).replace(" ", "")
    return None

# 提取“评测时间”字段中的日期信息
df1["评测时间"] = df1["评测时间"].apply(extract_date)

    首先使用pandas库的read_excel函数读取 Excel 格式的数据文件。然后,通过字符串操作和正则表达式,分别从 “评测有价值”“评测很欢乐”“游戏时长” 和 “评测时间” 字段中提取出所需的数值或关键信息,并对数据类型进行适当转换,为后续分析做好准备。

  1. 数据转换

    通过astype方法,将 “评测有价值”“评测很欢乐” 和 “游戏时长” 字段的数据类型转换为浮点数,方便后续进行数值计算和统计分析。

三、数据分析

(一)测评有价值”的分布情况

    

import plotly.express as px

# 统计“评测有价值”的人数分布
value_counts = df1['评测有价值'].value_counts().sort_index()

# 创建用于绘图的数据框
df_plot = pd.DataFrame({
    '人数': value_counts.index,
    '出现次数': value_counts.values
})

# 绘制柱状图
fig = px.bar(df_plot, x='人数', y='出现次数',
             color='出现次数', color_continuous_scale='Blues',
             title='"评测有价值"分布情况',
             labels={'人数': '人数', '出现次数': '出现次数'},
             template='plotly_white')

# 更新图表布局
fig.update_layout(
    xaxis_title='人数',
    yaxis_title='出现次数',
    xaxis_tickangle=-0,
    yaxis=dict(showgrid=True, gridcolor='LightGrey', gridwidth=1)
)

# 显示图表
fig.show()

    上述代码使用value——counts方法统计“测评有价值”字段中不同人数出现的次数,并按人数从小到大排序。接着,创建一个新的数据框df_plot用于存储绘图所需的数据u。然后,利用plotly.express库的px.bar函数绘制柱状图,通过设置颜色,标题,标签等参数使用图标更加易读。最后使用update_layout方法对图标的布局进行进一步调整,如设置坐标轴标题,刻度角度和网格线样式等。

    从柱状图(图 1)可以看出,横坐标为觉得评测有价值的人数,纵坐标为该人数出现的次数。其中,人数为 1 时出现次数最多,接近 1000 次,说明大部分评测获得认为有价值的人数较少。同时,随着人数的增加,出现次数总体呈下降趋势,但在人数为 20 左右时,出现次数有一个小高峰,约为 600 次。这表明游戏的评测价值认可度较为分散,少数评测能获得较多玩家认为有价值,开发者可以重点关注这些获得较高认可的评测内容,从中挖掘玩家关注的重点,为游戏改进提供参考。

(二)情感分析

    利用 SnowNLP 工具对评测内容进行情感分析,计算每条评测的情感分值(范围为 0 - 1,0 表示完全负面,1 表示完全正面),并进行统计描述:
from snownlp import SnowNLP

# 将评测内容转换为字符串类型,确保SnowNLP能正确处理
df1['评测内容'] = df1['评测内容'].apply(lambda x: str(x))

# 计算情感分值
df1['情感分值'] = df1['评测内容'].apply(lambda x: SnowNLP(x).sentiments)

# 查看情感分值的统计信息
print("情感分值的统计信息:")
print(df1['情感分值'].describe())

样本数量:此次参与情感分析的内容有10310条,相对比较广泛的样本,可以是分析结果更加准确代表整体玩家的情感倾向。  

平均值:情感分值平均值为0.611634,略低于0.5,说明整体上玩家对于游戏的感情倾向偏向正向,即大部分玩家对游戏持较为满意的态度。

标准差:0.328259,说明不同玩家的情感分值存在一定波动,对游戏的评价存在差异。

分位数:5% 分位数为 0.396490,意味着有 25% 的评测情感分值低于该值,这部分评测可能包含较多负面评价;50% 分位数(中位数)为 0.655863,表明一半的评测情感分值低于此值,另一半高于此值;75% 分位数为 0.926796,说明 75% 的评测情感分值低于该值,即大部分评测的情感倾向是比较积极的。

、结论与建议

(一)结论

     评测价值认可度分散:从 “评测有价值” 的分布情况可知,大部分评测获得认可的人数较少,游戏评测价值的认可度较为分散。这反映出玩家对于不同评测内容的关注点和认可度差异较大,也侧面说明游戏可能在满足不同玩家需求方面存在一定的多样性。
    整体情感倾向积极:通过情感分析,虽然不同玩家的情感分值存在波动,但情感分值平均值为 0.611634,高于 0.5,且 75% 的评测情感分值低于 0.926796,说明整体上玩家对《黑神话:悟空》的情感倾向是积极的,多数玩家对游戏较为满意。不过,仍有 25% 的评测情感分值较低,表明游戏在某些方面还未能达到部分玩家的期望。

(二) 建议

    聚焦高认可度评测:游戏开发者应重点关注那些获得较高认可的评测内容,深入挖掘其中玩家关注的重点。例如,若这些评测频繁提及游戏的战斗系统或剧情设计,开发者可在这些方面进一步优化和拓展,以满足更多玩家的需求,提升游戏整体质量。

    优化游戏以减少负面评价:针对情感分值较低的评测内容,进行分类和深入分析,找出导致玩家负面评价的具体原因。比如是游戏的性能问题(如卡顿、掉帧),还是游戏内容方面(如任务难度不合理、剧情连贯性差)的不足,然后有针对性地进行改进,减少负面评价的产生,提高玩家的满意度。

    加强用户反馈机制建设:建立更加完善和便捷的用户反馈渠道,鼓励玩家及时反馈游戏中遇到的问题和建议。开发者可以定期收集和整理这些反馈信息,将其纳入游戏的优化计划中,增强与玩家的互动和沟通,让玩家感受到自己的意见被重视,从而提高玩家的忠诚度和留存率。

本文仅供参考。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值