一、项目背景
春节档作为电影行业年度最为关键的档期之一,凭借其庞大的观影人群和高涨的消费热情,成为众多影片角逐的重要战场。在这一时期,各类题材电影纷纷上映,不仅满足了不同观众的娱乐需求,更在一定程度上反映了当下电影市场的发展趋势和观众喜好。通过对春节档电影票房数据的深入剖析,我们能够洞察电影市场的动态,为电影制作、发行、营销等环节提供有价值的参考依据,助力行业更好地把握市场脉搏,创作和推出更受观众喜爱的作品。本项目聚焦于 2025 年春节档电影票房数据,旨在通过数据挖掘和分析,揭示该档期电影市场的诸多特征和规律。
二、数据来源与准备
(一)数据来源
本次分析所使用的数据源自位于 “D:\study\movie_data\text1.xlsx” 的 Excel 文件,其中数据具体存储在名为 “Sheet1” 的工作表内。该数据集全面涵盖了 2025 年春节档期间电影的票房表现、基本信息及放映相关数据,为我们深入探究春节档电影市场提供了丰富而详实的一手资料。
(二)数据清理与转换
1.数据类型转换:
原始数据集中,“累计票房 (万)” 和 “当前票房 (万)” 列的数据类型需转换为浮点数,以便后续进行精准的数值运算。运用以下代码实现数据类型的转换
df['累计票房(万)'] = df['累计票房(万)'].astype(float)
df['当前票房(万)'] = df['当前票房(万)'].astype(float)
“上映日期” 列的数据对于分析电影票房随时间的变化趋势至关重要,需将其数据类型转换为 datetime
类型,以支持基于日期的筛选、排序及时间序列分析。代码如下:
df['上映日期'] = pd.to_datetime(df['上映日期'])
2.数据预览:
在完成数据清理与类型转换操作后,使用 df.head()
方法对数据进行初步预览,展示结果如下:
三、数据分析过程
(一)计算累计票房占比
为精准衡量每部电影在春节档整体票房格局中的地位和份额,我们需要计算每部电影的累计票房占比。通过以下代码实现这一关键计算:
total_box_office = df['累计票房(万)'].sum()
df['票房占比'] = (df['累计票房(万)'] / total_box_office) * 100
代码首先通过 sum()
函数计算出数据集中所有电影的累计票房总和,并将结果存储于 total_box_office
变量中。随后,利用该总和对每部电影的累计票房进行归一化处理,将每部电影的累计票房除以总票房,再乘以 100,从而得到以百分比形式呈现的每部电影的票房占比,并将计算结果存储在新创建的 “票房占比” 列中。
(二)筛选票房占比前 10 的电影
为了聚焦于春节档最具票房影响力和市场号召力的头部电影,我们执行以下操作筛选出票房占比排名前 10 的电影:
top_10 = df.groupby('电影名称')['累计票房(万)'].max().nlargest(10).index
df_top10 = df[df['电影名称'].isin(top_10)]
代码首先运用 groupby
方法按 “电影名称” 对数据集进行分组,以便针对每部电影独立进行后续操作。接着,在每个分组内使用 max()
函数获取该电影在数据集中出现的最大累计票房数值。随后,通过 nlargest(10)
方法从所有电影的最大累计票房数值中筛选出排名前 10 的数值,并利用 index
属性获取对应的电影名称索引,存储于 top_10
变量中。最后,通过 isin()
方法筛选出 df
数据集中 “电影名称” 列的值包含在 top_10
中的所有数据行,将这些代表票房占比前 10 电影的数据存储在 df_top10
中。
(三)计算每个电影的累计票房总和
针对筛选出的票房占比前 10 的电影,我们进一步计算它们各自的累计票房总和,代码如下:
top_10_box_office = df_top10.groupby('电影名称')['累计票房(万)'].sum().reset_index()
此代码再次运用 groupby
方法按 “电影名称” 对 df_top10
数据集进行分组,随后使用 sum()
函数计算每个分组内 “累计票房 (万)” 列的总和,即每部票房占比前 10 电影的累计票房总和。最后,通过 reset_index()
方法将计算结果从默认的分组索引格式转换为常规的 DataFrame
格式,方便后续的数据处理和分析,转换后的结果存储在 top_10_box_office
中。
(四)计算前 10 电影的票房占比总和
为了明确这 10 部头部电影在春节档整体票房中的综合影响力,我们计算它们的票房占比总和,具体步骤如下:
total_top10_box_office = top_10_box_office['累计票房(万)'].sum()
top_10_box_office['票房占比'] = (top_10_box_office['累计票房(万)'] / total_top10_box_office) * 100
代码首先计算 top_10_box_office
数据集中 “累计票房 (万)” 列的总和,即前 10 电影的累计票房总和,结果存储在 total_top10_box_office
变量中。然后,基于该总和重新计算每部前 10 电影的票房占比,即每部电影的累计票房除以这 10 部电影的累计票房总和,再乘以 100,将新计算得到的票房占比结果存储在 top_10_box_office
的 “票房占比” 列中,覆盖之前可能存在的其他含义的票房占比数据。
四、数据可视化
(一)绘制票房占比饼图
为直观且形象地展示春节档票房占比前 10 的电影的票房分布情况,我们运用 plotly.express
库创建环形饼图,代码如下:
fig = px.pie(
top_10_box_office,
names='电影名称',
values='票房占比',
title='春节档累计票房占比(Top 10)',
labels={'票房占比': '票房占比(%)'},
hole=0.3
)
在这段代码中:
px.pie()
函数负责创建饼图。数据源为top_10_box_office
,该数据集包含了前 10 电影的相关信息。names='电影名称'
参数指定饼图中每个扇形对应的电影名称,确保观众能够清晰识别每部分所代表的电影。values='票房占比'
参数明确每个扇形所代表的数值为电影的票房占比,从而直观呈现各电影在春节档票房中的份额情况。title
参数设置图表标题为 “春节档累计票房占比(Top 10)”,简洁明了地概括了图表的核心内容。labels
参数用于优化图表中数值轴的标签显示,将原本的 “票房占比” 更改为 “票房占比(%)”,使观众更易理解数值的含义。hole=0.3
参数用于创建环形饼图,其中空心部分的半径占整个饼图半径的 30%,这种环形设计相较于传统饼图,在视觉上更加美观且能够突出各部分之间的比例关系。
# 显示图表
fig.show()
通过调用 fig.show()
方法,在相关环境(如 Jupyter Notebook、Web 浏览器等)中展示绘制好的环形饼图,用户可以直观地观察到春节档票房占比前 10 的电影的票房分布格局,清晰对比各电影之间的票房占比差异。
五、结论与展望
通过本次对 2025 年春节档电影票房数据的全面分析,我们成功揭示了该档期电影市场的一些关键特征和规律。从累计票房占比的计算结果以及票房占比前 10 电影的筛选和分析来看,春节档电影市场呈现出明显的头部集中效应,少数几部电影凭借其优质的内容、强大的品牌影响力或成功的营销策略,吸引了大量观众走进影院,占据了绝大部分的票房份额。通过环形饼图的可视化展示,这种票房分布的不均衡性得以直观呈现,为电影行业从业者提供了清晰的市场格局认知。
展望未来,本项目的分析可以在多个方向上进一步拓展和深化。一方面,可以引入更多维度的数据进行综合分析,例如电影的题材类型、导演和演员阵容、观众评分、社交媒体热度等,探究这些因素与票房表现之间的潜在关联,为电影制作和营销提供更具针对性的建议。另一方面,时间序列分析可以进一步细化,研究春节档期间每日、每周的票房变化趋势,以及不同时间段内各类电影的表现差异,从而更好地把握观众的观影行为和市场动态。此外,随着数据的不断积累和更新,持续开展类似的分析工作,能够为电影行业提供长期、连续的市场洞察,助力行业在激烈的竞争环境中实现可持续发展。
本项目所使用的数据集已公开,感兴趣的研究者和电影爱好者可以基于此数据集,从更多角度进行数据挖掘和分析,共同推动对电影市场的深入理解和研究。