题目背景
出题是一件痛苦的事情!
相同的题目看多了也会有审美疲劳,于是我舍弃了大家所熟悉的 A+B Problem,改用 A-B 了哈哈!
题目描述
给出一串正整数数列以及一个正整数 C,要求计算出所有满足 A−B=C 的数对的个数(不同位置的数字一样的数对算不同的数对)。
输入格式
输入共两行。
第一行,两个正整数 N,C。
第二行,N 个正整数,作为要求处理的那串数。
输出格式
一行,表示该串正整数中包含的满足 A−B=C 的数对的个数。
输入输出样例
输入 #1复制
4 1 1 1 2 3
输出 #1复制
3
说明/提示
对于75% 的数据,1≤N≤2000。
对于 100% 的数据,1≤N≤2×10^5,0≤ai<2^30,1≤C<2^30。
2017/4/29 新添数据两组
#include <iostream> // 包含标准输入输出流库
#include <vector> // 包含动态数组容器库
#include <algorithm> // 包含算法库,用于排序函数sort
using namespace std; // 使用标准命名空间
// 二分查找函数,返回值大于等于target的最小索引
long long int binarySearch(const vector<long long int>& sortedArray, long long int target) {
long long int left = 0; // 初始化二分查找的左边界
long long int right = sortedArray.size(); // 初始化二分查找的右边界
while (left < right) { // 当左边界小于右边界时循环
int mid = left + (right - left) / 2; // 计算中间索引
if (sortedArray[mid] < target) { // 如果中间值小于目标值
left = mid + 1; // 更新左边界为中间值的右侧
} else {
right = mid; // 更新右边界为中间索引
}
}
return left; // 返回大于等于目标值的最小索引
}
int main() {
long long int N, C; // 定义两个长整型变量N和C
cin >> N >> C; // 从标准输入读取N和C的值
vector<long long int> numbers(N); // 创建一个大小为N的动态数组numbers
for (int i = 0; i < N; ++i) { // 循环读取N个整数到numbers数组
cin >> numbers[i];
}
// 对数组进行排序
sort(numbers.begin(), numbers.end()); // 使用标准库中的sort函数对numbers数组进行排序
long long int count = 0; // 初始化计数器count为0
for (int i = 0; i < N; ++i) { // 循环遍历排序后的数组
// 使用二分查找寻找numbers[i] - C
// 计算二分查找的次数差,即[numbers[i] + C + 1) - (numbers[i] + C)]
// 这里binarySearch(numbers, numbers[i] + C + 1)查找第一个大于等于numbers[i] + C + 1的元素的索引
// binarySearch(numbers, numbers[i] + C)查找第一个大于等于numbers[i] + C的元素的索引
// 两者之差即为在[numbers[i] + C, numbers[i] + C + 1)区间内元素的数量
count += (binarySearch(numbers, numbers[i] + C + 1) - binarySearch(numbers, numbers[i] + C));
}
cout << count << endl; // 输出计算得到的count值
return 0; // 程序正常结束
}