欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景与目标
随着智能交通系统的发展,车牌识别技术已成为其不可或缺的一部分,对提高交通管理效率和车辆安全管理起到了至关重要的作用。然而,在雾霾等恶劣气象条件下,车牌识别系统往往面临识别精度下降的问题。为了克服这一难题,本项目基于Matlab技术,开发了一个能够在雾霾天气下准确识别车牌的系统。
二、系统组成与功能
本项目主要由以下三个模块组成:
图像预处理:针对雾霾天气下图像的特点,系统采用图像去雾技术,如暗通道先验去雾算法等,对原始图像进行预处理。这一步骤旨在消除雾霾对图像的干扰,提高车牌区域的清晰度和字符的可识别性。
车牌定位:在预处理后的图像中,系统利用图像处理技术,如颜色分割、边缘检测、形态学操作等,准确找到车牌所在的位置,并将其从背景中分离出来。
车牌识别:在车牌定位的基础上,系统利用Matlab神经网络工具箱中的深度学习算法,特别是卷积神经网络(CNN),对车牌字符进行识别。通过训练和优化神经网络模型,系统能够准确识别车牌字符,并输出识别结果。
三、技术实现
数据准备:收集包含雾霾天气下的车牌图像数据集,并进行标注和预处理。为了增强模型的泛化能力,系统还对图像进行了旋转、缩放、平移等数据增强操作。
模型构建与训练:利用Matlab神经网络工具箱中的深度学习框架,构建基于CNN的车牌识别模