基于深度学习的音乐推荐算法研究

收藏和点赞,您的关注是我创作的动力

概要

  为了解决上述的问题,本文提出了两种音乐推荐算法模型,主要工作如下:
  (1)提出了一种基于卷积神经网络的音乐推荐算法。针对协同过滤等音乐推荐算法存在冷启动和无法深层次提取音乐音频的有效特征,以及重复利用相同的用户历史记录数据,没能使用音乐本身包含的特性等问题,于是引入能够反映音乐特性的音频谱图和音乐类别描述元数据等来构建其特征数据。该算法首先对原始音频数据进行预处理,然后构建基于 梅尔频谱图特征集,即为了保留音频更多有效的潜在特征,将处理好的音频数据进行FFT和梅尔滤波器处理,最后对结果取对数运算,以此作为本算法模型的输入,在推荐时利用基于内容的推荐原理计算用户的偏好,并为其推荐喜欢的音乐。
  (2)提出了一种基于深度强化学习的音乐推荐算法。针对上述提到的用户兴趣通常是动态变化的和当前的音乐推荐算法无法做长期决策,以及无法有效地挖掘用户的潜在偏好,且推荐缺乏多样性等问题,采用深度强化学习对音乐推荐过程进行模拟,利用词向量技术预训练生成的向作为该模型的输入,并引入经验回放机制,将用户交互生成的经验轨迹暂存在经验池中,进行有监督训练。该算法是以DDPG 核心的音乐推荐模型,使用交互式试错机制进行学习用户对音乐动态变化的兴趣,并在其探索策略下对短期收益和长期收益进行有效的模拟,从而能够为用户主动挖掘其感兴趣或有潜在偏好的音乐,且能更多关注长尾信息,达到多样性推荐。
关键词:音乐推荐系统;卷积神经网络;深度强化学习;特征提取&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值