欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景与意义
在公共场所,如公园、商场、地铁等,行人的社交安全距离对于维护公共秩序和减少疾病传播具有重要意义。然而,由于人流密集、环境复杂等因素,传统的人工监测方式难以满足实时、准确的需求。因此,开发一种基于深度学习的行人社交安全距离监测系统具有重要的现实意义和应用价值。
二、项目目标
本项目旨在利用YOLOv5深度学习模型,开发一种能够实时监测和预测行人社交安全距离的系统。该系统将通过摄像头采集图像,利用YOLOv5模型进行实时目标检测,并根据行人的位置、速度、方向等信息,预测其与周围人群的社交安全距离。当检测到距离过近时,系统将自动发出警告或采取干预措施,以减少潜在的安全风险。
三、技术实现
YOLOv5模型介绍:YOLOv5是一种基于深度学习的目标检测算法,它采用单阶段检测的方式,在保持高精度的同时实现了更快的推理速度。YOLOv5通过卷积神经网络对图像进行特征提取,并利用anchor boxes来预测物体的位置和类别。其高效的设计使得它适用于实时目标检测任务。
系统工作流程:系统通过摄像头采集公共场所的图像数据,并将数据传输至服务器进行处理。在服务器端,YOLOv5模型将对图像进行实时目标检测,识别出行人并确定其位置、速度、方向等信息。然后,系统将根据这些信息计算行人与周围人群的社交安全距离,并判断是否存在距离过近的情况。如果检测到距离过近,系统将自动发出警告或采取干预措施,如通过语音提示、显示警告信息等方式提醒行人注意