特价股票筛选中的深度学习模型应用
关键词:深度学习,股票筛选,神经网络,特征工程,时间序列分析
摘要:本文将深入探讨如何利用深度学习模型,特别是神经网络,来筛选特价股票。我们从特价股票的基本概念出发,分析深度学习模型在金融领域的独特优势,详细介绍深度学习模型的核心原理、特征工程、算法实现、系统架构设计以及实际项目案例。最后,我们将总结深度学习在股票筛选中的最佳实践和未来发展方向。
第一部分: 特价股票与深度学习模型概述
第1章: 特价股票与深度学习模型概述
1.1 特价股票的基本概念
1.1.1 什么是特价股票
特价股票是指那些市场价格低于其内在价值,或者具有潜在上涨空间的股票。这类股票通常被市场低估,具有较高的投资回报潜力。特价股票的筛选需要结合市场数据、公司基本面和技术分析等多个维度进行综合判断。
1.1.2 特价股票的分类与特征
特价股票可以分为以下几类:
- 价值型股票:市盈率、市净率等