【问题描述】
某国为了防御敌国的导弹袭击,开发出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭,并观测到导弹依次飞来的高度,请计算这套系统最多能拦截多少导弹。拦截来袭导弹时,必须按来袭导弹袭击的时间顺序,不允许先拦截后面的导弹,再拦截前面的导弹。
【输入形式】
每组输入有两行,
第一行,输入雷达捕捉到的敌国导弹的数量k(k<=25),
第二行,输入k个正整数,表示k枚导弹的高度,按来袭导弹的袭击时间顺序给出,以空格分隔。
【输出形式】
每组输出只有一行,包含一个整数,表示最多能拦截多少枚导弹。
【样例输入】
8 300 207 155 300 299 170 158 65
【样例输出】
6
样例解释:最多能拦截的导弹为300 300 299 170 158 65,共六枚
思路:采用动态规划,从后往前找最大的递增(等)序列,然后判断是否更新当前最大序列
完整代码:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int main()
{
int k=0;
cin >> k;
vector<int> all(k);
for (int i=0;i<k;i++) cin >> all[i];
vector<int> dp(k,1);//表示第i个导弹结尾的最长不上升子序列长度
for(int i=1;i<k;i++)
{
for (int j=0;j<i;j++)
if (all[j]>=all[i]) dp[i]=max(dp[i],dp[j]+1);
}
int maxhight=*max_element(dp.begin(),dp.end());
cout << maxhight;
return 0;
}