stable diffusion本地安装教程

去git上下载项目,网址如下

GitHub - AUTOMATIC1111/stable-diffusion-webui: Stable Diffusion web UI

f6c50a150079464db49f1931ae2fb09a.png得到一个zip包将其解压,通过pycharm打开解压的文件夹

9efa8c0873344f0d84c20270d14a025f.png

配置python解释器之后,python版本必须大于等于3.9才行,之后点左下角的终端

0b4948e2533b49c7bd844ba206d99116.png

在安装pytorch,根据自身硬件情况安装gpu版或者cpu版,安装代码网址:

Start Locally | PyTorchccc557db34874062a3bd39c173ae61de.png

接着运行以下代码,安装环境

pip install -r requirements.txt
pip install -r requirements-test.txt
pip install -r requirements_versions.txt
pip install -r requirements_npu.txt
pip install dctorch
pip install clip

安装完成之后点机webui.py,运行它,会发现第一个报错

17142048c9334cd49b305e65fd034863.png

这个报错是因为项目本身缺少文件,需要打开项目文件夹在上面输入

2d086f35229647308ca829a35252b038.png

在cmd里输入以下命令即可解决第一个报错

git clone https://github.com/Stability-AI/stablediffusion repositories/stable-diffusion-stability-ai

3857a3654c0f4c3aa68464afc223ed9c.png

再次点击运行就会出现第二个报错

cebf2bf59cd8447fa249e7be1d1ea220.png

打开任意文件夹,这个报错还是因为项目本身缺少文件,步骤如上,运行以下命令

git clone https://github.com/Stability-AI/generative-models.git

k-diffusion 也是丢失的,运行以下命令
git clone https://github.com/crowsonkb/k-diffusion.git

将上述下载的文件全部复制到项目文件夹里

之后再点击webui.py运行它,又会报以下错误,只需点击最后一个报错的地方,跳转到那个文件

278c162795304cd7a5882883d8475f48.png

注释以下三行代码即可

717c5e55410a4720b0ec7e413e74fe36.png

在repositories这个文件夹下创建一个stable-diffusion-webui-assets名字的文件夹即可

再次点击运行即可成功,它会为你默认下载一个模型

3b80c3e166e8405b8bde3f516abd7382.png

下载之后会为你启动网页,就可以开始绘图了。

3e5db24408a74e1698c09e1d0e7f8d4a.png

Stable Diffusion是一款基于深度学习的语言模型,它通常通过云服务提供,例如Hugging Face的Hub等。由于它是开源的,如果你想在本地安装并运行它,你需要做以下步骤: 1. **下载源码**: 首先,访问Stable Diffusion的GitHub仓库(https://github.com/huggingface/stable-diffusion),克隆或下载最新版本的代码。 2. **环境配置**: 确保你的系统上已经安装了必要的依赖,如Python(推荐使用3.7+版本)、PyTorch、Transformers库以及可能需要的GPU支持(如果有的话)。可以使用pip来安装这些库。 ```bash pip install torch torchvision transformers --upgrade ``` 3. **数据准备**: 模型训练通常需要大量的文本数据,这包括预处理后的训练数据和额外的配置文件。你可以从官方提供的数据集链接下载数据,并按照说明解压和配置。 4. **搭建环境**: 如果在本地运行大模型,可能还需要设置适当的内存限制和其他资源配置。比如,在某些Linux发行版中,可能需要设置CUDA_VISIBLE_DEVICES环境变量来指定GPU。 5. **编译模型**: 进入项目目录,根据项目的readme文档,可能需要对模型进行编译或转换,以便在本地部署。 6. **训练或加载**: 根据你的需求,选择是训练一个新模型还是直接加载预训练模型。如果是训练,可能需要运行训练脚本;如果是加载,找到合适的 checkpoint 文件进行加载。 7. **运行服务**: 使用像Flask这样的web框架创建一个API,将训练好的模型集成进去,允许用户输入请求并得到响应。 8. **安全性和性能优化**: 为了保护隐私和提高效率,记得加密敏感数据,调整好批处理大小和推理频率。 **注意事项**: 在本地运行大型模型可能会消耗大量计算资源,并且涉及到的数据处理也较为复杂。如果不是专业研究者或有特定需求,一般建议使用预训练模型和云服务来获取即时的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值