目录
一、最大公因数-辗转相除法
递归-精简形式
int gcd(int a,int b)//求最大公约数
{
return b==0?a:gcd(b,a%b);
}
二、最小公倍数-(有了最大公因数)
//最小公倍数
int gcm(int a,int b)
{
int gcds=b==0?a:gcd(b,a%b);//求最大公约数
return a*b/gcds;
//return a*b/gcd(a,b);
}
最多个数的最小公倍数
for(int i=0;i<N;i++)
{
k=gcm(k,b[i]);
}
三、实战-L1-009 N个数求和
本题的要求很简单,就是求N
个数字的和。麻烦的是,这些数字是以有理数分子/分母
的形式给出的,你输出的和也必须是有理数的形式。
输入格式:
输入第一行给出一个正整数N
(≤100)。随后一行按格式a1/b1 a2/b2 ...
给出N
个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。
输出格式:
输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分
,其中分数部分写成分子/分母
,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。
输入样例1:
5
2/5 4/15 1/30 -2/60 8/3
输出样例1:
3 1/3
输入样例2:
2
4/3 2/3
输出样例2:
2
输入样例3:
3
1/3 -1/6 1/8
输出样例3:
7/24
思路:
先把个数化简,后求出分母的最大公倍数,分子相乘最大公倍数除于分母(注意这里要把分母为负数转化为分子负数),然后分子相加,最后求出整数(分子除于分母求商),分子(分子除于分母求余数),然后分子分母再化简。注意输出的时候由整数、分子为0的情况。
代码:
#include <bits/stdc++.h>
using namespace std;
int N;
int a[101],b[101];
int gcd(int a,int b)//求最大公约数
{
return b==0?a:gcd(b,a%b);
}
//最大公倍数
int gcm(int a,int b)
{
int gcds=b==0?a:gcd(b,a%b);//求最大公约数
return a*b/gcds;
}
void Simpli()
{
int g;
for(int i=0;i<N;i++)
{
g=gcd(a[i],b[i]);
a[i]=a[i]/g;
b[i]=b[i]/g;
}
}
int main()
{
cin>>N;
char s;
for(int i=0;i<N;i++)
{
cin>>a[i];
cin>>s;
cin>>b[i];
}
Simpli();
int k=b[0];
for(int i=0;i<N;i++)
{
k=gcm(k,b[i]);
}
for(int i=0;i<N;i++)
{
if(b[i]<0||a[i]<0)
{
a[i]=abs(a[i]*k/b[i])*-1;
}
else
{
a[i]=a[i]*abs(k)/b[i];
}
b[i]=abs(k);
}
int model=0;
int den=0;
for(int i=0;i<N;i++)
{
model+=a[i];
den=abs(k);
}
int integer;
integer=model/den;
model=model%den;
int gs=gcd(model,den);
model=model/gs;
den=den/gs;
if(integer==0)
{
if(model==0)
cout<<model;
else
cout<<model<<"/"<<den;
}
else
{
if(model==0)
{
cout<<integer;
}
else
{
cout<<integer<<" "<<model<<"/"<<den;
}
}
return 0;
}