最大公因数/最大公倍数/最小公倍数

目录

一、最大公因数-辗转相除法

二、最大公倍数-(有了最大公因数)

最多个数的最大公倍数

三、实战-L1-009 N个数求和

思路:

代码: 

一、最大公因数-辗转相除法

递归-精简形式

int gcd(int a,int b)//求最大公约数 
{
	return b==0?a:gcd(b,a%b);
}

二、最小公倍数-(有了最大公因数)

//最小公倍数 
int gcm(int a,int b)
{
	int gcds=b==0?a:gcd(b,a%b);//求最大公约数 
	return a*b/gcds;
//return a*b/gcd(a,b);
}

最多个数的最小公倍数

	for(int i=0;i<N;i++)
	{
		k=gcm(k,b[i]); 
	}

三、实战-L1-009 N个数求和

本题的要求很简单,就是求N个数字的和。麻烦的是,这些数字是以有理数分子/分母的形式给出的,你输出的和也必须是有理数的形式。

输入格式:

输入第一行给出一个正整数N(≤100)。随后一行按格式a1/b1 a2/b2 ...给出N个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。

输出格式:

输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分,其中分数部分写成分子/分母,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。

输入样例1:

5
2/5 4/15 1/30 -2/60 8/3

输出样例1:

3 1/3

输入样例2:

2
4/3 2/3

输出样例2:

2

输入样例3:

3
1/3 -1/6 1/8

输出样例3:

7/24

思路:

先把个数化简,后求出分母的最大公倍数,分子相乘最大公倍数除于分母(注意这里要把分母为负数转化为分子负数),然后分子相加,最后求出整数(分子除于分母求商),分子(分子除于分母求余数),然后分子分母再化简。注意输出的时候由整数、分子为0的情况。

代码: 

#include <bits/stdc++.h>
using namespace std;
int N;
int a[101],b[101];
int gcd(int a,int b)//求最大公约数 
{
	return b==0?a:gcd(b,a%b);
}
//最大公倍数 
int gcm(int a,int b)
{
	int gcds=b==0?a:gcd(b,a%b);//求最大公约数 
	return a*b/gcds;
}
void Simpli()
{
	int g;
	for(int i=0;i<N;i++)
	{
		g=gcd(a[i],b[i]);
		a[i]=a[i]/g;
		b[i]=b[i]/g;
	}
}

int main()
{
	cin>>N;
	char s;
	for(int i=0;i<N;i++)
	{
		cin>>a[i];
		cin>>s;
		cin>>b[i];
	}
	Simpli();
	int k=b[0];
	for(int i=0;i<N;i++)
	{
		k=gcm(k,b[i]); 
	}
	for(int i=0;i<N;i++)
	{
		if(b[i]<0||a[i]<0)
		{
			a[i]=abs(a[i]*k/b[i])*-1; 
		}
		else
		{
			a[i]=a[i]*abs(k)/b[i];
		}
		b[i]=abs(k); 
	}
	int model=0;
	int den=0;
	for(int i=0;i<N;i++)
	{
		model+=a[i];
		den=abs(k);
	}
	int integer;
	integer=model/den;
	model=model%den;
	int gs=gcd(model,den);
	model=model/gs;
	den=den/gs;
	if(integer==0)
	{
		if(model==0)
		cout<<model;
		else
		cout<<model<<"/"<<den;
	}
	else
	{
		if(model==0)
		{
			cout<<integer;
		}
		else
		{
		cout<<integer<<" "<<model<<"/"<<den;
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值