pyecharts的并行多图

# 【组合图表:并行多图】
 
# 组合图表,也是一种特殊的图表类型
# 并行多图: 就是往组合图表里面填充各种图表(Bar,Line,Scatter) —— 往图表里面填充图表
 
 
# 1.创建一个Grid图表
# 2.往Grid图表里面填充其他图表(Bar,Line,Scatter)
 
 
 
from pyecharts import options as opts
from pyecharts.charts import Bar, Grid, Line,Pie,Radar
x_data = ["2014", "2015", "2016", "2017", "2018", "2019", "2020", "2021"]
 
bar1 = (
    Bar()
    .add_xaxis(xaxis_data=x_data)# 导入系列数据
    .add_yaxis(
        series_name="诊疗量(万人次)",# 系列名称,用于 tooltip 的显示,legend 的图例筛选。
        y_axis=[87430,90912,96225,101885,107147,116390,105764,120215],# 系列数据
        label_opts=opts.LabelOpts(is_show=False), # 是否显示数据标签
    )
    .extend_axis(
        yaxis=opts.AxisOpts(      #新增 Y 坐标轴配置项
            name="同比增速(%)",      #新增 Y 坐标名字
            type_="value",        # 'value': 数值轴,适用于连续数据。
            min_=-20,             #坐标轴最小值
            max_=15,              #坐标轴最大值,#LabelOpts:标签配置项
        )
    )
    .set_global_opts(             #全局配置项可通过 set_global_opts 方法设置
        tooltip_opts=opts.TooltipOpts(    #TooltipOpts:提示框配置项
            is_show=True, trigger="axis", axis_pointer_type="cross"  #is_show是否显示,trigger坐标轴触发,指示器类型:十字准星
        ),
        xaxis_opts=opts.AxisOpts(
            type_="category",
            axispointer_opts=opts.AxisPointerOpts(is_show=True, type_="shadow"),
        ),
        yaxis_opts=opts.AxisOpts(
            name="诊疗量(万人次)",
            type_="value",
            min_=0,
            max_=150000,
            axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
            axistick_opts=opts.AxisTickOpts(is_show=True),
            splitline_opts=opts.SplitLineOpts(is_show=True),
        ),
        title_opts=opts.TitleOpts(title='2014-2021年中国中医类医疗卫生机构诊疗量'),
        legend_opts=opts.LegendOpts(pos_left='45%' ),# 图例组件离容器左侧的距离45%。
    )
    .set_series_opts(    #系统配置项
        itemstyle_opts=opts.ItemStyleOpts(
            opacity=0.5))#柱状图透明度
)
 
line1 = (
    Line()
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="同比增速(%)",
        yaxis_index=1,#在单个图表实例中存在多个 y 轴的时候有用。这里就是用于第一个y轴
        y_axis=[7.40,4.00,5.83,5.81,5.16,8.63,-9.13,13.66],#数据
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="同比增速", pos_top="10%"),
        legend_opts=opts.LegendOpts(pos_top="10%"),
    )
)
 
data = [['20岁以下-2.2%', 2.2], ['20-30岁-27.9%', 27.9], ['31-40岁-56.2%', 56.2], ['41-50岁-10.9%', 10.9],['50岁以上-2.8%',2.8]]#饼图数据
 
pie = (
    Pie()
    .add("",data,
        is_avoid_label_overlap = False,
        percent_precision = 2,
         radius=["12.5%", "25%"],
        center=["16.5%","60%"]
        )
     .set_global_opts(
        title_opts=opts.TitleOpts(title="中药材消费者画像", pos_top="40%"),
        legend_opts=opts.LegendOpts(pos_top="45%",pos_left='1%',is_show = False),
    )
)
 
data2 = ['2019年','2020年','2021年','2022年','2023年']
 
bar2 = (
    Bar()
    .add_xaxis(xaxis_data=data2)
    .add_yaxis(
        series_name="跨国企业占比",
        y_axis=[20.3,22.0,23.5,22.5,22.3],stack="stack1", category_gap="50%",xaxis_index=1,yaxis_index=2
    )
    .add_yaxis(
        series_name="本土企业占比",
               y_axis=[79.7,78.0,76.5,77.5,77.7],stack="stack1", category_gap="50%",xaxis_index=1,yaxis_index=2)
    .set_global_opts(
    title_opts=opts.TitleOpts(title="全国药店饮片供应商占比",pos_top="40%",pos_left="40%"),
    legend_opts=opts.LegendOpts(is_show=False),
    )
)
 
radar_data=['化学药','中成药','生物制品','医疗器械','中药饮片','保健品']
 
data2 = [[50,45,3,9,6,4]]
 
# radar = (
#     Radar()
#     .add_schema(schema=[opts.RadarIndicatorItem(name="化学药", max_=50),
#             opts.RadarIndicatorItem(name="中成药", max_=50),
#             opts.RadarIndicatorItem(name="生物制品", max_=50),
#             opts.RadarIndicatorItem(name="医疗器械", max_=50),
#             opts.RadarIndicatorItem(name="中药饮片", max_=50),
#             opts.RadarIndicatorItem(name="保健品", max_=50),],shape="circle",
#                 splitarea_opt=opts.SplitAreaOpts(
#             is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
#     ))
#     .add(
#         series_name="中成药",
#         data=data2,
#         linestyle_opts=opts.LineStyleOpts(color="#CD0000"),
#     )
#     .add(
#         series_name='化学药',
#         data=data2,
#         linestyle_opts=opts.LineStyleOpts(color="#5CACEE"),
#     )
#     .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
#     .set_global_opts(
#         title_opts=opts.TitleOpts(title="全国药店药品销售额占比",pos_top="1%",pos_left="40%"),legend_opts=opts.LegendOpts()
# )
# )
 
overlap_1 = bar1.overlap(line1)
grid = (
    # 1.创建一个Grid图表
    Grid(init_opts=opts.InitOpts(width="1000px", height="800px"))
    # 2.往Grid图表里面填充其他图表(Bar,Line,Scatter)
    # 通过联合调整pos_bottom, pos_top, pos_left, pos_right这四个参数,可以精细布局图表在整张画布中的位置    
    .add(overlap_1, grid_opts=opts.GridOpts(pos_bottom='70%',pos_top="10%",
                                     pos_left="10%",pos_right="10%",
                                     ),is_control_axis_index=True)
    
    
    .add(bar2, grid_opts=opts.GridOpts(is_show=True,pos_bottom=450, pos_top=600, pos_left="40%", pos_right="40%"),is_control_axis_index=True)
    
 
    .add(pie, grid_opts=opts.GridOpts(pos_bottom=40, pos_top=400, pos_left="10%", pos_right="70%"))
    
    #add(radar, grid_opts=opts.GridOpts(pos_bottom="1%",pos_top="70%",pos_left="80%",pos_right="1%",))
    
 
)
 
grid.render_notebook()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值