- 博客(14)
- 收藏
- 关注
原创 第T3周:天气识别
本文将采用CNN实现多云、下雨、晴、日出四种天气状态的识别。较上篇文章,本文为了增加模型的泛化能力,新增了Dropout层并且将最大池化层调整成了平均池化层。语言环境:Python3.10编译器:Pycharm深度学习环境:TensorFlow 2.10.0这周练习过程中学习如何编写一个完整的深度学习程序。在学习过程中,发现TensorFlow比Pytorch难一点,要敲代码跑通起来,对代码要了解透彻。关于导入数据这块,也学到了好多。还学习了手动推导卷积层与池化层的计算过程。
2024-11-01 20:07:40 271
原创 第T2周:彩色图片分类
● 学习如何编写一个完整的深度学习程序● 了解分类彩色图片和灰度图片有什么区别● 测试集accuracy到达72%语言环境:Python3.10编译器:Pycharm深度学习环境:TensorFlow 2.10.0这周练习过程中学习如何编写一个完整的深度学习程序。在学习过程中,发现TensorFlow比Pytorch难一点,要敲代码跑通起来,对代码要了解透彻。关于导入数据这块,也学到了好多。还学习了手动推导卷积层与池化层的计算过程。
2024-10-18 20:54:45 375
原创 第T1周:实现mnist手写数字识别
1.跑通程序2.了解什么是深度学习?语言环境:Python3.10编译器:Pycharm深度学习环境:TensorFlow 2.10.0本周练习过程中,对整个深度学习框架大概了解一些。在学习过程中,发现TensorFlow比Pytorch难一点,要敲代码跑通起来,摸索一下,发现自已敲代码不细心,导致代码跑不通。关于导入数据这块,学到了好多。还出现了TensorFlow AVX2的错误问题,我去查这个问题才知道这是一个版本的问题,解决问题的方法就是在你的环境中安装。
2024-10-11 17:32:40 262
原创 第P10周:Pytorch实现车牌识别
学习并理解本文对单张车牌进行识别语言环境:Python3.10编译器:Pycharm深度学习环境:Pytorch本周练习过程中,运行代码有些不顺利,但一件件的解决了。首先,学习了关于pytorch如何识别车牌。其次如何运用关于pytorch模块的模型。最后,如何查看模型的参数量以及相关指标。
2024-10-04 16:22:40 788
原创 第P9周:YOLOv5-Backbone模块实现
本周练习过程中,运行代码有些不顺利,但一件件的解决了。首先,学习了关于如何搭建YOLOv5-Backbone模块的模型。其次如何运用YOLOv5-Backbone模块的模型。最后,如何查看模型的参数量以及相关指标。
2024-09-20 17:56:22 405
原创 第P8周:YOLOv5-C3模块实现
本周练习过程中,运行代码有些不顺利,但一件件的解决了。首先,学习了关于如何搭建YOLOv5-C3模块的模型其次如何运用YOLOv5-C3模块的模型最后,如何查看模型的参数量以及相关指标。
2024-09-13 20:12:22 471
原创 第P7周:马铃薯病害识别(VGG-16复现)
自己搭建VGG-16网络框架调用官方的VGG-16网络框架如何查看模型的参数量以及相关指标验证集准确率达到100%使用PPT画出VGG-16算法框架图(发论文需要这项技能)语言环境:Python3.10编译器:Pycharm深度学习环境:Pytorch本周练习过程中,运行代码有些不顺利,但一件件的解决了。首先,学习了关于如何自己搭建VGG-16网络框架其次如何调用官方的VGG-16网络框架最后,如何查看模型的参数量以及相关指标。
2024-09-06 17:28:29 670
原创 第P6周:VGG-16算法-Pytorch实现人脸识别
保存训练过程中的最佳模型权重调用官方的VGG-16网络框架测试集准确率达到60%(难度有点大,但是这个过程可以学到不少)手动搭建VGG-16网络框架语言环境:Python3.10编译器:Pycharm深度学习环境:Pytorch本周练习过程中,运行代码有些不顺利,但一件件的解决了。首先,学习了如何设置动态学习率。其次也学习了关于如何调用VGG-16模型最后,学习了相对于上周增加指定图片预测与保存并加载模型这个两个模块。
2024-08-30 17:53:55 496
原创 第P5周:Pytorch实现运动鞋识别
了解如何设置动态学习率(重点)调整代码使测试集accuracy到达84%。保存训练过程中的最佳模型权重调整代码使测试集accuracy到达86%。语言环境:Python3.10编译器:Pycharm深度学习环境:Pytorch本周练习过程中,运行代码有些不顺利,但一件件的解决了。首先,学习了如何设置动态学习率。其次也学习了关于测试和训练函数最后,学习了相对于上周增加指定图片预测与保存并加载模型这个两个模块。
2024-08-13 20:53:56 416
原创 第p4周:猴痘病识别
训练过程中保存效果最好的模型参数。加载最佳模型参数识别本地的一张图片。调整网络结构使测试集accuracy到达88%(重点)。调整模型参数并观察测试集的准确率变化。尝试设置动态学习率。测试集accuracy到达90%。语言环境:Python3.10编译器:Pycharm深度学习环境:Pytorch本周练习过程中,运行代码有些不顺利,但一件件的解决了。首先,学习了如何找到文件夹路径的数据集。
2024-08-09 17:03:13 688
原创 第p3周:Pytorch实现天气识别
1.本地读取并加载数据2.测试集accuracy到达93%1.测试集accuracy到达95%2.调用模型识别一张本地图片语言环境:Python3.10编译器:Pycharm深度学习环境:Pytorch本周练习过程中,运行代码有些不顺利,但一件件的解决了。首先,学习了如何找到文件夹路径的数据集。其次也学习了使用torch.utils.data.random_split()方法进行数据集划分。
2024-07-26 12:29:28 863
原创 第p2周:CIFAR10彩色图片识别
1.学习如何编写一个完整的深度学习程序2.手动推导卷积层与池化层的计算过程语言环境:Python3.10编译器:Pycharm深度学习环境:本周练习过程中学习如何编写一个完整的深度学习程序。在学习过程中,要敲代码跑通起来,对代码要了解透彻。关于导入数据这块,也学到了好多。还学习了手动推导卷积层与池化层的计算过程。
2024-07-17 21:40:37 380
原创 第P1周:Pytorch实现mnist手写数字识别
1.了解Pytorch,并使用Pytorch构建一个深度学习程序。2.了解什么是深度学习?语言环境:Python3.10编译器:Pycharm深度学习环境:本周练习过程中,对整个深度学习框架大概了解一些。在学习过程中,要敲代码跑通起来,摸索一下,发现自已敲代码不细心,导致代码跑不通。关于导入数据这块,学到了好多。
2024-07-12 11:43:39 398
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人