第P9周:YOLOv5-Backbone模块实现

实验环境:

  • 语言环境:Python3.10
  • 编译器:Pycharm
  • 深度学习环境:Pytorch
    1.torch == 2.4.0+cu121
    2.torchvision == 0.19.0+cu121

一、前期准备

1.设置GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
import os,PIL,random,pathlib
from torchvision.models import vgg16
import torch.nn.functional as F
import torchsummary as summary
import copy
warnings.filterwarnings("ignore")  #忽略警告信息
import copy
import matplotlib.pyplot as plt
#隐藏警告
import warnings

# 设置硬件设备,如果有GPU则使用,没有则使用cpu
#-------------设置GPU---------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

代码输出:

cuda

2.导入数据

输入代码:

# ---------------------------导入数据----------------------
data_dir = 'F:/lsydata/tianqidata/weather_photos/'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[4] for path in data_paths]
print(classeNames)

代码输出:

['cloudy', 'rain', 'shine', 'sunrise']

代码输入:

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("F:/lsydata/tianqidata/weather_photos/", transform=train_transforms)
print(total_data)

代码输出:

Dataset ImageFolder
    Number of datapoints: 1125
    Root location: F:/lsydata/tianqidata/weather_photos/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=warn)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

代码输入:

print(total_data.class_to_idx)

代码输出:

{'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}

3.划分数据集

代码输入:

train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_dataset)
print(test_dataset)

代码输出:

<torch.utils.data.dataset.Subset object at 0x0000022B8CED0DC0>
<torch.utils.data.dataset.Subset object at 0x0000022B8CED0E50>

代码输入:

batch_size = 4

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)

if __name__ == '__main__':
    for X, y in test_dl:
        print("Shape of X [N, C, H, W]: ", X.shape)
        print("Shape of y: ", y.shape, y.dtype)
        break

代码输出:

Shape of X [N, C, H, W]:  torch.Size([4, 3, 224, 224])
Shape of y:  torch.Size([4]) torch.int64

二、搭建包含Backbone模块的模型

1.搭建模型

代码输入:

def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
    
class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
"""
这个是YOLOv5, 6.0版本的主干网络,这里进行复现
(注:有部分删改,详细讲解将在后续进行展开)
"""
class YOLOv5_backbone(nn.Module):
    def __init__(self):
        super(YOLOv5_backbone, self).__init__()
        
        self.Conv_1 = Conv(3, 64, 3, 2, 2) 
        self.Conv_2 = Conv(64, 128, 3, 2) 
        self.C3_3   = C3(128,128)
        self.Conv_4 = Conv(128, 256, 3, 2) 
        self.C3_5   = C3(256,256)
        self.Conv_6 = Conv(256, 512, 3, 2) 
        self.C3_7   = C3(512,512)
        self.Conv_8 = Conv(512, 1024, 3, 2) 
        self.C3_9   = C3(1024, 1024)
        self.SPPF   = SPPF(1024, 1024, 5)
        
        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=65536, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)
        )
        
    def forward(self, x):
        x = self.Conv_1(x)
        x = self.Conv_2(x)
        x = self.C3_3(x)
        x = self.Conv_4(x)
        x = self.C3_5(x)
        x = self.Conv_6(x)
        x = self.C3_7(x)
        x = self.Conv_8(x)
        x = self.C3_9(x)
        x = self.SPPF(x)
        
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
    
model = YOLOv5_backbone().to(device)
print(model)

代码输出:

Using cuda device
YOLOv5_backbone(
  (Conv_1): Conv(
    (conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2), bias=False)
    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (Conv_2): Conv(
    (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_3): C3(
    (cv1): Conv(
      (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (Conv_4): Conv(
    (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_5): C3(
    (cv1): Conv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (Conv_6): Conv(
    (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_7): C3(
    (cv1): Conv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (Conv_8): Conv(
    (conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_9): C3(
    (cv1): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (SPPF): SPPF(
    (cv1): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
  )
  (classifier): Sequential(
    (0): Linear(in_features=65536, out_features=100, bias=True)
    (1): ReLU()
    (2): Linear(in_features=100, out_features=4, bias=True)
  )
)

2.查看模型详细

代码输入:

#-----------------查看模型详细-----------------------
# 统计模型参数量以及其他指标
summary.summary(model, (3, 224, 224))

代码输出:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 113, 113]           1,728
       BatchNorm2d-2         [-1, 64, 113, 113]             128
              SiLU-3         [-1, 64, 113, 113]               0
              Conv-4         [-1, 64, 113, 113]               0
            Conv2d-5          [-1, 128, 57, 57]          73,728
       BatchNorm2d-6          [-1, 128, 57, 57]             256
              SiLU-7          [-1, 128, 57, 57]               0
              Conv-8          [-1, 128, 57, 57]               0
            Conv2d-9           [-1, 64, 57, 57]           8,192
      BatchNorm2d-10           [-1, 64, 57, 57]             128
             SiLU-11           [-1, 64, 57, 57]               0
             Conv-12           [-1, 64, 57, 57]               0
           Conv2d-13           [-1, 64, 57, 57]           4,096
      BatchNorm2d-14           [-1, 64, 57, 57]             128
             SiLU-15           [-1, 64, 57, 57]               0
             Conv-16           [-1, 64, 57, 57]               0
           Conv2d-17           [-1, 64, 57, 57]          36,864
      BatchNorm2d-18           [-1, 64, 57, 57]             128
             SiLU-19           [-1, 64, 57, 57]               0
             Conv-20           [-1, 64, 57, 57]               0
       Bottleneck-21           [-1, 64, 57, 57]               0
           Conv2d-22           [-1, 64, 57, 57]           8,192
      BatchNorm2d-23           [-1, 64, 57, 57]             128
             SiLU-24           [-1, 64, 57, 57]               0
             Conv-25           [-1, 64, 57, 57]               0
           Conv2d-26          [-1, 128, 57, 57]          16,384
      BatchNorm2d-27          [-1, 128, 57, 57]             256
             SiLU-28          [-1, 128, 57, 57]               0
             Conv-29          [-1, 128, 57, 57]               0
               C3-30          [-1, 128, 57, 57]               0
           Conv2d-31          [-1, 256, 29, 29]         294,912
      BatchNorm2d-32          [-1, 256, 29, 29]             512
             SiLU-33          [-1, 256, 29, 29]               0
             Conv-34          [-1, 256, 29, 29]               0
           Conv2d-35          [-1, 128, 29, 29]          32,768
      BatchNorm2d-36          [-1, 128, 29, 29]             256
             SiLU-37          [-1, 128, 29, 29]               0
             Conv-38          [-1, 128, 29, 29]               0
           Conv2d-39          [-1, 128, 29, 29]          16,384
      BatchNorm2d-40          [-1, 128, 29, 29]             256
             SiLU-41          [-1, 128, 29, 29]               0
             Conv-42          [-1, 128, 29, 29]               0
           Conv2d-43          [-1, 128, 29, 29]         147,456
      BatchNorm2d-44          [-1, 128, 29, 29]             256
             SiLU-45          [-1, 128, 29, 29]               0
             Conv-46          [-1, 128, 29, 29]               0
       Bottleneck-47          [-1, 128, 29, 29]               0
           Conv2d-48          [-1, 128, 29, 29]          32,768
      BatchNorm2d-49          [-1, 128, 29, 29]             256
             SiLU-50          [-1, 128, 29, 29]               0
             Conv-51          [-1, 128, 29, 29]               0
           Conv2d-52          [-1, 256, 29, 29]          65,536
      BatchNorm2d-53          [-1, 256, 29, 29]             512
             SiLU-54          [-1, 256, 29, 29]               0
             Conv-55          [-1, 256, 29, 29]               0
               C3-56          [-1, 256, 29, 29]               0
           Conv2d-57          [-1, 512, 15, 15]       1,179,648
      BatchNorm2d-58          [-1, 512, 15, 15]           1,024
             SiLU-59          [-1, 512, 15, 15]               0
             Conv-60          [-1, 512, 15, 15]               0
           Conv2d-61          [-1, 256, 15, 15]         131,072
      BatchNorm2d-62          [-1, 256, 15, 15]             512
             SiLU-63          [-1, 256, 15, 15]               0
             Conv-64          [-1, 256, 15, 15]               0
           Conv2d-65          [-1, 256, 15, 15]          65,536
      BatchNorm2d-66          [-1, 256, 15, 15]             512
             SiLU-67          [-1, 256, 15, 15]               0
             Conv-68          [-1, 256, 15, 15]               0
           Conv2d-69          [-1, 256, 15, 15]         589,824
      BatchNorm2d-70          [-1, 256, 15, 15]             512
             SiLU-71          [-1, 256, 15, 15]               0
             Conv-72          [-1, 256, 15, 15]               0
       Bottleneck-73          [-1, 256, 15, 15]               0
           Conv2d-74          [-1, 256, 15, 15]         131,072
      BatchNorm2d-75          [-1, 256, 15, 15]             512
             SiLU-76          [-1, 256, 15, 15]               0
             Conv-77          [-1, 256, 15, 15]               0
           Conv2d-78          [-1, 512, 15, 15]         262,144
      BatchNorm2d-79          [-1, 512, 15, 15]           1,024
             SiLU-80          [-1, 512, 15, 15]               0
             Conv-81          [-1, 512, 15, 15]               0
               C3-82          [-1, 512, 15, 15]               0
           Conv2d-83           [-1, 1024, 8, 8]       4,718,592
      BatchNorm2d-84           [-1, 1024, 8, 8]           2,048
             SiLU-85           [-1, 1024, 8, 8]               0
             Conv-86           [-1, 1024, 8, 8]               0
           Conv2d-87            [-1, 512, 8, 8]         524,288
      BatchNorm2d-88            [-1, 512, 8, 8]           1,024
             SiLU-89            [-1, 512, 8, 8]               0
             Conv-90            [-1, 512, 8, 8]               0
           Conv2d-91            [-1, 512, 8, 8]         262,144
      BatchNorm2d-92            [-1, 512, 8, 8]           1,024
             SiLU-93            [-1, 512, 8, 8]               0
             Conv-94            [-1, 512, 8, 8]               0
           Conv2d-95            [-1, 512, 8, 8]       2,359,296
      BatchNorm2d-96            [-1, 512, 8, 8]           1,024
             SiLU-97            [-1, 512, 8, 8]               0
             Conv-98            [-1, 512, 8, 8]               0
       Bottleneck-99            [-1, 512, 8, 8]               0
          Conv2d-100            [-1, 512, 8, 8]         524,288
     BatchNorm2d-101            [-1, 512, 8, 8]           1,024
            SiLU-102            [-1, 512, 8, 8]               0
            Conv-103            [-1, 512, 8, 8]               0
          Conv2d-104           [-1, 1024, 8, 8]       1,048,576
     BatchNorm2d-105           [-1, 1024, 8, 8]           2,048
            SiLU-106           [-1, 1024, 8, 8]               0
            Conv-107           [-1, 1024, 8, 8]               0
              C3-108           [-1, 1024, 8, 8]               0
          Conv2d-109            [-1, 512, 8, 8]         524,288
     BatchNorm2d-110            [-1, 512, 8, 8]           1,024
            SiLU-111            [-1, 512, 8, 8]               0
            Conv-112            [-1, 512, 8, 8]               0
       MaxPool2d-113            [-1, 512, 8, 8]               0
       MaxPool2d-114            [-1, 512, 8, 8]               0
       MaxPool2d-115            [-1, 512, 8, 8]               0
          Conv2d-116           [-1, 1024, 8, 8]       2,097,152
     BatchNorm2d-117           [-1, 1024, 8, 8]           2,048
            SiLU-118           [-1, 1024, 8, 8]               0
            Conv-119           [-1, 1024, 8, 8]               0
            SPPF-120           [-1, 1024, 8, 8]               0
          Linear-121                  [-1, 100]       6,553,700
            ReLU-122                  [-1, 100]               0
          Linear-123                    [-1, 4]             404
================================================================
Total params: 21,729,592
Trainable params: 21,729,592
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 137.59
Params size (MB): 82.89
Estimated Total Size (MB): 221.06
----------------------------------------------------------------

三、训练模型

1.编写训练函数

#-------------------编写训练函数-----------------
#训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset) #训练集的大小,一共60000张图片
    num_batches = len(dataloader) #批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0 #初始化训练损失和正确率

    for X, y in dataloader:  #获取图片及其标签
        X, y = X.to(device), y.to(device)

        #计算预测误差
        pred = model(X)     #网络输出
        loss =loss_fn(pred, y)   #计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失。

        #反向传播
        optimizer.zero_grad()   #grad属性归零
        loss.backward()  #反向传播
        optimizer.step()  #每一步自动更新

        #记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss

2.编写测试函数

#--------------------编写测试函数-------------------------------
def test (dataloader, model, loss_fn):
    size = len(dataloader.dataset)  #测试集的大小,一共10000张图片
    num_batches = len(dataloader)   #批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0

    #当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            #计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss

3.正式训练

optimizer = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn = nn.CrossEntropyLoss() # 创建损失函数

epochs = 60

train_loss = []
train_acc = []
test_loss = []
test_acc = []

best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标

if __name__ == '__main__':
    for epoch in range(epochs):
        # 更新学习率(使用自定义学习率时使用)
        # adjust_learning_rate(optimizer, epoch, learn_rate)

        model.train()
        epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)

        model.eval()
        epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

        # 保存最佳模型到 best_model
        if epoch_test_acc > best_acc:
            best_acc = epoch_test_acc
            best_model = copy.deepcopy(model)

        train_acc.append(epoch_train_acc)
        train_loss.append(epoch_train_loss)
        test_acc.append(epoch_test_acc)
        test_loss.append(epoch_test_loss)

        # 获取当前的学习率
        lr = optimizer.state_dict()['param_groups'][0]['lr']

        template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
        print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
                              epoch_test_acc * 100, epoch_test_loss, lr))

    # 保存最佳模型到文件中
    PATH = './best_model.pth'  # 保存的参数文件名
    torch.save(model.state_dict(), PATH)

    print('Done')

代码输出:

Epoch: 1, Train_acc:55.9%, Train_loss:1.140, Test_acc:71.1%, Test_loss:0.878, Lr:1.00E-04
Epoch: 2, Train_acc:61.9%, Train_loss:0.912, Test_acc:70.7%, Test_loss:0.757, Lr:1.00E-04
Epoch: 3, Train_acc:70.8%, Train_loss:0.707, Test_acc:69.3%, Test_loss:0.831, Lr:1.00E-04
Epoch: 4, Train_acc:73.8%, Train_loss:0.706, Test_acc:80.0%, Test_loss:0.480, Lr:1.00E-04
Epoch: 5, Train_acc:76.3%, Train_loss:0.682, Test_acc:73.3%, Test_loss:0.865, Lr:1.00E-04
Epoch: 6, Train_acc:74.4%, Train_loss:0.642, Test_acc:80.9%, Test_loss:0.628, Lr:1.00E-04
Epoch: 7, Train_acc:77.2%, Train_loss:0.570, Test_acc:86.2%, Test_loss:0.445, Lr:1.00E-04
Epoch: 8, Train_acc:79.6%, Train_loss:0.477, Test_acc:85.3%, Test_loss:0.385, Lr:1.00E-04
Epoch: 9, Train_acc:83.3%, Train_loss:0.440, Test_acc:91.6%, Test_loss:0.306, Lr:1.00E-04
Epoch:10, Train_acc:86.3%, Train_loss:0.376, Test_acc:87.6%, Test_loss:0.329, Lr:1.00E-04
Epoch:11, Train_acc:85.3%, Train_loss:0.374, Test_acc:86.2%, Test_loss:0.456, Lr:1.00E-04
Epoch:12, Train_acc:88.2%, Train_loss:0.331, Test_acc:89.3%, Test_loss:0.291, Lr:1.00E-04
Epoch:13, Train_acc:89.1%, Train_loss:0.300, Test_acc:91.1%, Test_loss:0.353, Lr:1.00E-04
Epoch:14, Train_acc:89.1%, Train_loss:0.302, Test_acc:90.7%, Test_loss:0.285, Lr:1.00E-04
Epoch:15, Train_acc:89.7%, Train_loss:0.272, Test_acc:85.8%, Test_loss:0.691, Lr:1.00E-04
Epoch:16, Train_acc:89.0%, Train_loss:0.320, Test_acc:87.6%, Test_loss:0.352, Lr:1.00E-04
Epoch:17, Train_acc:91.2%, Train_loss:0.237, Test_acc:90.2%, Test_loss:0.452, Lr:1.00E-04
Epoch:18, Train_acc:91.8%, Train_loss:0.223, Test_acc:88.9%, Test_loss:0.303, Lr:1.00E-04
Epoch:19, Train_acc:92.3%, Train_loss:0.214, Test_acc:92.9%, Test_loss:0.273, Lr:1.00E-04
Epoch:20, Train_acc:92.4%, Train_loss:0.232, Test_acc:90.2%, Test_loss:0.326, Lr:1.00E-04
Epoch:21, Train_acc:93.2%, Train_loss:0.172, Test_acc:93.8%, Test_loss:0.227, Lr:1.00E-04
Epoch:22, Train_acc:94.0%, Train_loss:0.157, Test_acc:88.4%, Test_loss:0.370, Lr:1.00E-04
Epoch:23, Train_acc:95.4%, Train_loss:0.140, Test_acc:89.3%, Test_loss:0.306, Lr:1.00E-04
Epoch:24, Train_acc:96.0%, Train_loss:0.114, Test_acc:92.0%, Test_loss:0.323, Lr:1.00E-04
Epoch:25, Train_acc:94.2%, Train_loss:0.177, Test_acc:86.2%, Test_loss:1.057, Lr:1.00E-04
Epoch:26, Train_acc:93.1%, Train_loss:0.185, Test_acc:92.4%, Test_loss:0.244, Lr:1.00E-04
Epoch:27, Train_acc:94.8%, Train_loss:0.145, Test_acc:89.8%, Test_loss:0.406, Lr:1.00E-04
Epoch:28, Train_acc:97.1%, Train_loss:0.068, Test_acc:94.2%, Test_loss:0.269, Lr:1.00E-04
Epoch:29, Train_acc:96.4%, Train_loss:0.102, Test_acc:93.8%, Test_loss:0.218, Lr:1.00E-04
Epoch:30, Train_acc:96.2%, Train_loss:0.108, Test_acc:90.2%, Test_loss:0.304, Lr:1.00E-04
Epoch:31, Train_acc:96.1%, Train_loss:0.121, Test_acc:94.2%, Test_loss:0.213, Lr:1.00E-04
Epoch:32, Train_acc:96.6%, Train_loss:0.099, Test_acc:93.8%, Test_loss:0.254, Lr:1.00E-04
Epoch:33, Train_acc:97.3%, Train_loss:0.085, Test_acc:92.4%, Test_loss:0.394, Lr:1.00E-04
Epoch:34, Train_acc:96.9%, Train_loss:0.068, Test_acc:93.3%, Test_loss:0.317, Lr:1.00E-04
Epoch:35, Train_acc:95.9%, Train_loss:0.106, Test_acc:90.2%, Test_loss:0.509, Lr:1.00E-04
Epoch:36, Train_acc:96.8%, Train_loss:0.084, Test_acc:93.8%, Test_loss:0.377, Lr:1.00E-04
Epoch:37, Train_acc:98.1%, Train_loss:0.054, Test_acc:93.3%, Test_loss:0.346, Lr:1.00E-04
Epoch:38, Train_acc:99.0%, Train_loss:0.033, Test_acc:89.3%, Test_loss:0.600, Lr:1.00E-04
Epoch:39, Train_acc:97.6%, Train_loss:0.073, Test_acc:92.9%, Test_loss:0.375, Lr:1.00E-04
Epoch:40, Train_acc:98.3%, Train_loss:0.058, Test_acc:92.0%, Test_loss:0.369, Lr:1.00E-04
Epoch:41, Train_acc:97.0%, Train_loss:0.079, Test_acc:92.4%, Test_loss:0.382, Lr:1.00E-04
Epoch:42, Train_acc:97.7%, Train_loss:0.053, Test_acc:95.1%, Test_loss:0.287, Lr:1.00E-04
Epoch:43, Train_acc:98.4%, Train_loss:0.057, Test_acc:91.1%, Test_loss:0.447, Lr:1.00E-04
Epoch:44, Train_acc:97.3%, Train_loss:0.087, Test_acc:92.9%, Test_loss:0.263, Lr:1.00E-04
Epoch:45, Train_acc:98.9%, Train_loss:0.033, Test_acc:91.1%, Test_loss:0.423, Lr:1.00E-04
Epoch:46, Train_acc:98.6%, Train_loss:0.058, Test_acc:91.1%, Test_loss:0.467, Lr:1.00E-04
Epoch:47, Train_acc:96.4%, Train_loss:0.086, Test_acc:92.0%, Test_loss:0.289, Lr:1.00E-04
Epoch:48, Train_acc:98.2%, Train_loss:0.061, Test_acc:93.3%, Test_loss:0.342, Lr:1.00E-04
Epoch:49, Train_acc:99.7%, Train_loss:0.011, Test_acc:93.8%, Test_loss:0.325, Lr:1.00E-04
Epoch:50, Train_acc:99.7%, Train_loss:0.008, Test_acc:95.1%, Test_loss:0.293, Lr:1.00E-04
Epoch:51, Train_acc:98.7%, Train_loss:0.041, Test_acc:94.7%, Test_loss:0.244, Lr:1.00E-04
Epoch:52, Train_acc:98.7%, Train_loss:0.041, Test_acc:91.1%, Test_loss:0.604, Lr:1.00E-04
Epoch:53, Train_acc:97.6%, Train_loss:0.068, Test_acc:89.8%, Test_loss:0.655, Lr:1.00E-04
Epoch:54, Train_acc:98.0%, Train_loss:0.059, Test_acc:89.3%, Test_loss:0.596, Lr:1.00E-04
Epoch:55, Train_acc:98.1%, Train_loss:0.071, Test_acc:92.0%, Test_loss:0.427, Lr:1.00E-04
Epoch:56, Train_acc:97.3%, Train_loss:0.064, Test_acc:92.0%, Test_loss:0.407, Lr:1.00E-04
Epoch:57, Train_acc:97.3%, Train_loss:0.080, Test_acc:92.9%, Test_loss:0.280, Lr:1.00E-04
Epoch:58, Train_acc:99.2%, Train_loss:0.023, Test_acc:94.7%, Test_loss:0.327, Lr:1.00E-04
Epoch:59, Train_acc:99.4%, Train_loss:0.014, Test_acc:93.8%, Test_loss:0.336, Lr:1.00E-04
Epoch:60, Train_acc:99.9%, Train_loss:0.005, Test_acc:94.7%, Test_loss:0.368, Lr:1.00E-04
Done

四、结果可视化

1. Loss与Accuracy图

#--------------------------------结果可视化------------------------
warnings.filterwarnings("ignore")  #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  #用来正常显示负号
plt.rcParams['figure.dpi'] = 100  #分辨率

epochs_range = range(epochs)

if len(train_acc) > 0 and len(test_acc) > 0:
    plt.figure(figsize=(12, 3))
    plt.subplot(1, 2, 1)
    plt.plot(epochs_range, train_acc, label='Training Accuracy')
    plt.plot(epochs_range, test_acc, label='Test Accuracy')
    plt.legend(loc='lower right')
    plt.title('Training and Validation Accuracy')

    plt.subplot(1, 2, 2)
    plt.plot(epochs_range, train_loss, label='Training Loss')
    plt.plot(epochs_range, test_loss, label='Test Loss')
    plt.legend(loc='upper right')
    plt.title('Training and Validation Loss')
    plt.show()
else:
    print("No data available for plotting.")

代码输出:
在这里插入图片描述

2. 模型评估

代码输入:

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)

print(epoch_test_acc)
print(epoch_test_loss)

代码输出:

(0.9511111111111111, 0.25679569537080343)

五、总结

本周练习过程中,运行代码有些不顺利,但一件件的解决了。
首先,学习了关于如何搭建YOLOv5-Backbone模块的模型。
其次如何运用YOLOv5-Backbone模块的模型。
最后,如何查看模型的参数量以及相关指标。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值