数学建模
文章平均质量分 69
美赛数学建模
交大老学长带你玩转数模
展开
-
第十届统计建模大赛 ——大数据与人工智能时代的统计研究数据解析
统计数学建模数据原创 2024-03-27 14:39:15 · 2745 阅读 · 8 评论 -
2024年 (第十届)全国大学生统计建模大赛优秀论文解析——中国经济发展与碳排放库兹涅茨曲线的验证研究
更多资料请联系CSDN。原创 2024-03-27 13:55:58 · 7059 阅读 · 5 评论 -
2024全国大学生数学建模常用数学建模时间序列模型之——移动平均法
一、时间序列简介时间序列是按时间顺序排列的、随时间变化且相互关联的数据序列。分析时间列的方法构成数据分析的一个重要领域,即时间序列分析。时间序列根据所研究的依据不同,可有不同的分类。1.按所研究的对象的多少分,有一元时间序列和多元时间序列。2.按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种。3.按序列的统计特性分,有平稳时间序列和非平稳时间序列。如果一个时间序列的概率分布与时间t无关,则称该序列为严格的(狭义的)平稳时间序列。如果序列的一、二阶矩存在,而且对任意时刻t。原创 2023-12-05 11:23:46 · 2367 阅读 · 1 评论 -
2024全国大学生数学建模常用数学建模模型之——微分方程模型
一、前言微分方程建模是数学建模的重要方法,因为许多实际问题的数学描述将导致求解微分方程的定解问题。把形形色色的实际问题化成微分方程的定解问题, 大体上可以按以下几步:1.根据实际要求确定要研究的量自变量、未知函数、必要的参数等并确定坐标系。2.找出这些量所满足的基本规律物理的、几何的、化学的或生物学的等等。3.运用这些规律列出方程和定解条件。列方程常见的方法有:i)按规律直接列方程在数学、力学、物理、化学等学科中许多自然现象所满足的规律已为人们所熟悉,原创 2023-12-04 10:31:24 · 1967 阅读 · 0 评论 -
2024美赛数学建模常用数学建模模型之——时间序列模型
平稳时间序列模型这里的平稳是指宽平稳,其特性是序列的统计特性不随时间的平移而变化,即均值和协方差不随时间的平移而变化。下面自回归模型()简称AR模型, 移动平均模型(Moving)简称MA模型, 自回归移动平均模型(Model)简称ARMA模型。下面的Xt为零均值(即中心化处理的)平稳序列。1)一般自回归模型AR(n八、ARMA模型的特性在时间序列的时域分析中,线性差分方程是极为有效的工具。原创 2023-12-09 23:09:14 · 1097 阅读 · 0 评论 -
2024全国大学生数学建模常用数学建模时间序列模型之——指数平滑法
一次移动平均实际上认为最近N期数据对未来值影响相同, 都加权1/N;而N期以前的数据对未来值没有影响,加权为0。但是,二次及更高次移动平均数的权数却不是1/N,且次数越高,权数的结构越复杂,但永远保持对称的权数,即两端项权数小,中间项权数大, 不符合一般系统的动态性。一般说来历史数据对未来值的影响是随时间间隔的增长而递减的。所以, 更切合实际的方法应是对各期观测值依时间顺序进行加权平均作为预测值。指数平滑法可满足这一要求,而且具有简单的递推形式。原创 2023-12-06 21:08:33 · 4227 阅读 · 1 评论 -
2024全国大学生数学建模常用国赛建模数学建模时间序列模型之——差分指数平滑法
差分方法和指数平滑法的联合运用,除了能克服一次指数平滑法的滞后偏差之外,对初始值的问题也有显著的改进。但是,对于指数平滑法存在的加权系数α 的选择问题,以及只能逐期预测问题,差分指数平滑模型也没有改进。因此把序列中逐期增量的加权平均数(指数平滑值)加上当前值的实际数进行预测,比一次指数平滑法只用变量以往取值的加权平均数作为下一期的预测更合理。由资料可以看出,燃料消耗量,除个别年份外,逐期增长量大体在200 吨左右,即呈直线增长,因此可用一阶差分指数平滑模型来预测。对于这个公式的数学意义可作如下的解释。原创 2023-12-07 10:28:32 · 825 阅读 · 0 评论 -
2024国赛数学建模常用数学建模时间序列模型之——自适应滤波法
自适应滤波法有两个明显的优点: 一是技术比较简单, 可根据预测意图来选择权数。由于自适应滤波法的预测模型简单, 又可以在计算机上对数据进行处理, 所以这种。在实际应用中,权数调整计算工作量可能很大,必须借助于计算机。据来寻求最佳权系数,并随数据轨迹的变化而不断更新权数,从而不断改进预测。它要寻找一组“最佳”的权数, 其办法是先用一组给定的权数。初始权数的确定也很重要,如无其它依据,也可用。复进行, 直至找出一组“最佳”权数,使误差。再根据预测误差调整权数以减少误差。来计算一个预测值, 然后计算预测误差,原创 2023-12-08 10:57:20 · 767 阅读 · 0 评论 -
2024美赛数学建模常用数学建模模型之——插值法
如果对于 一个特殊函数进行磨光处理生成磨光函数(多项式),则用磨光函数构造出样条函数作 为插值函数,既有足够的光滑性,而且也具有较好的保凹凸性,因此磨光函数在一维插 值(曲线)和二维插值(曲面)问题中有着广泛的应用。许多工程技术中提出的计算问题对插值函数的光滑性有较高要求,如飞机的机翼外 形,内燃机的进、排气门的凸轮曲线,都要求曲线具有较高的光滑程度,不仅要连续, 而且要有连续的曲率,这就导致了样条插值的产生。高程(节点值),为了画出较精确的等高线图,就要先插入更多的点(插值点),计算这。原创 2023-12-10 13:17:09 · 1237 阅读 · 1 评论 -
2024美赛数学建模常用数学建模时间序列模型之——趋势外推预测方法
生物的生长过程经历发生、发展到成熟三个阶段,在三个阶段生物的生长速度是不一样的,例如南瓜的重量增长速度,在第一阶段增长的较慢,在发展时期则突然加快,而到了成熟期又趋减慢,形成一条S 形曲线,这就是有名的Logistic 曲线(生长曲线),很多事物,如技术和产品发展进程都有类似的发展过程,因此Logistic 曲线在预测中有相当广泛的应用。因为任何事物的发展都是有一定限度的。一般来说,技术的进步和生产的增长,在其未达饱和之前的新生时期是遵循指数曲线增长规律的,因此可以用指数曲线对发展中的事物进行预测。原创 2023-12-08 14:43:10 · 1420 阅读 · 0 评论