[数据结构]二叉树(下)

一、二叉树的节点和深度关系

1.满二叉树

我们可以假设二叉树有N个节点,深度为h我们可以恒容易得到满二叉树每行的节点数,然后错位相减,算出节点与高度的关系。

2.完全二叉树

注意我这个是因为最后一行的节点数为1。

二、向上调整建堆和向下调整建堆的时间复杂度差异

1.向上调整建堆

现在我们有一个数组,我们要让它向上调整建堆

我们知道时间复杂度考虑的是最坏情况,现在我们来思考每一层向上调整需要的次数:

第一次不需要,第二层最多一次,以此类推,我们能退出以下关系式:

也就是:

2.向下调整建堆        

我们可以想象一下:

深度为h时,第一层每个节点的最大调整次数时h-1

深度为h时,第二层每个节点的最大调整次数时h--2

深度为h时,第三层每个节点的最大调整次数时h--3

深度为h时,第四层每个节点的最大调整次数时h--4

以此类推,倒数第二层每个节点的最大调整次数为1

最后一层每个节点的最大调整次数为0

因此我们可以得到这样一个关于它的时间复杂度

F(h)=2^(h-1)+2^(h-2)*2+.....+2^3*(h-3)+2^2*(h-2)+2^1*(h-1)

我们可以通过错位相减法,可以得到。

F(h)=2^(h-1)+2^(h-2)+2^(h-3)+....+2^2+2^1-(h-1)

F(N)=N-log(N+1)

通过与向上调整建堆,我们不难得到,这种情况下.向下调整建堆的效果更好.

三、堆的使用与堆排序

现在我们我思考如果我有这样的一个数组:

{0,3,1,4,6,9,2,7,5,8},如果我们要用堆让它完成一个升序的排列,我们应该选择建大堆还是建小堆呢?不少人可能会选择建小堆,但是如果我们完成了小堆,我们会发现:

我们只取出了最小值,很明显,这种方法是不行的。

所以这里我们选择建大堆。

void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		// 假设法,选出左右孩子中小的那个孩子
		if (child+1 < n && a[child + 1] > a[child])
		{
			++child;
		}

		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
void Swap(HPDataType* px, HPDataType* py)
{
	HPDataType tmp = *px;
	*px = *py;
	*py = tmp;
}
void HeapSort(int* a, int n)
{
	for (int i = (n-1-1)/2; i >= 0; --i)
	{
		AdjustDown(a, n, i);
	}
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}

而这种操作我们也称之为堆排序。

  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值