分数可以表示为分子/分母
的形式。编写一个程序,要求用户输入一个分数,然后将其约分为最简分式。最简分式是指分子和分母不具有可以约分的成分了。如6/12可以被约分为1/2。当分子大于分母时,不需要表达为整数又分数的形式,即11/8还是11/8;而当分子分母相等时,仍然表达为1/1的分数形式。
输入格式:
输入在一行中给出一个分数,分子和分母中间以斜杠
/
分隔,如:12/34
表示34分之12。分子和分母都是正整数(不包含0,如果不清楚正整数的定义的话)。
提示:
- 对于C语言,在
scanf
的格式字符串中加入/
,让scanf
来处理这个斜杠。 - 对于Python语言,用
a,b=map(int, input().split('/'))
这样的代码来处理这个斜杠。
输出格式:
在一行中输出这个分数对应的最简分式,格式与输入的相同,即采用
分子/分母
的形式表示分数。如5/6
表示6分之5。
输入样例:
66/120
输出样例:
11/20
本题我们要用到一个方法—— 辗转相除法,是我们在求最大公约数时用到的方法,在本题也同样适用哦。
我们先来回顾一下 辗转相除法是怎样"辗转"滴!•ᴗ•
如果b等于0,计算结束,a就是最大公约数;
否则,计算a除以b的余数,让a等于b,而b等于那个余数;
回到第一步。
a b t
12 18 12
18 12 6
12 6 0
6 0
那么本题就是运用这样的方法来求出最简分式的,我们用本题输入样例66/120来"辗转"一下~
m n t
66 120 66
120 66 54
66 54 12
54 12 6
12 6 0
6 0
本题代码如下:◍⁰ᯅ⁰◍
#include<stdio.h>
int main()
{
int a,b;
int t = 0;
int m,n;
scanf("%d/%d",&a,&b);
m = a;
n = b;
while(n!=0){
t = m%n;
m = n;
n = t;
}
printf("%d/%d",a/m,b/m);
return 0;
}
运行结果如下:◍⁰ᯅ⁰◍
66/120
11/20
--------------------------------
Process exited after 5.653 seconds with return value 0
请按任意键继续. . .