加法化简
加法即可以把一个数拆成两个数相加,其中一个数为模数的倍数,剩下一个即化简后的数字。
原理
a=qm+b,求ax≡1(modm)的解,即(qm+b)x=qmx+bx≡1(modm)。m整除qmx,则只需计算bx≡1(modm)的解即可。这里我们可以把b控制在0~m-1的范围,这样就极大地化简了计算量。
例子
比如990*x≡1(mod7)可化简为
(7*141+3)x≡1(mod7)
3x≡1(mod 7)
x=5
乘法化简
乘法同余1的式子可以进行化简
原理:
如果x²≡1(mod a)
则x²=ak+1
x⁴=(ak+1)²=a²k²+2ak+1≡1(mod a)
但是同余其他数不一定能化简
比如x²≡2(mod a)
x²=ak+2
x⁴=a²k²+4ak+4≡4(mod a)
此时x⁴模a余4而不是1
例子
运用欧拉定理x⁶≡1(mod 7),可推出x²≡1(mod 7)
可计算出x≡6,这种多项式解的范围为0~6,所以一开始要验算x≡0是否符合,综上,解为x≡0或x≡6(mod 7)