同余式化简计算

加法化简

加法即可以把一个数拆成两个数相加,其中一个数为模数的倍数,剩下一个即化简后的数字。

原理

a=qm+b,求ax≡1(modm)的解,即(qm+b)x=qmx+bx≡1(modm)。m整除qmx,则只需计算bx≡1(modm)的解即可。这里我们可以把b控制在0~m-1的范围,这样就极大地化简了计算量。

例子

比如990*x≡1(mod7)可化简为

(7*141+3)x≡1(mod7)

3x≡1(mod 7)

x=5

乘法化简

乘法同余1的式子可以进行化简

原理:

如果x²≡1(mod a)

则x²=ak+1

x⁴=(ak+1)²=a²k²+2ak+1≡1(mod a)

但是同余其他数不一定能化简

比如x²≡2(mod a)

x²=ak+2

x⁴=a²k²+4ak+4≡4(mod a)

此时x⁴模a余4而不是1

例子

运用欧拉定理x⁶≡1(mod 7),可推出x²≡1(mod 7)

6750912e3ca24921af2f99d587b0ecd7.jpg

 可计算出x≡6,这种多项式解的范围为0~6,所以一开始要验算x≡0是否符合,综上,解为x≡0或x≡6(mod 7)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值