一、整除
1、整除的概念
整除的概念
∀ a , b ∈ Z , 且 b ≠ 0 , 如果存在一个整数 q , 使得 a = q b 成立 , 则称为 b 整除 a , 或者 a 被 b 整除 , 记作 b ∣ a \forall a,b\in Z,且b\neq 0,如果存在一个整数q,使得a=qb成立,则称为b整除a,或者a被b整除,记作b|a ∀a,b∈Z,且b=0,如果存在一个整数q,使得a=qb成立,则称为b整除a,或者a被b整除,记作b∣a
整除的性质:
若 c ∣ a , c ∣ b ,那么 c ∣ s a + t b ( s , t ∈ Z ) 若c|a,c|b,那么c|sa+tb(s,t\in Z) 若c∣a,c∣b,那么c∣sa+tb(s,t∈Z)
素数的性质:
若 n 是一个正合数, p 是 n 的一个大于 1 的最小正因数,那么 p 一定是素数 若n是一个正合数,p是n的一个大于1的最小正因数,那么p一定是素数 若n是一个正合数,p是n的一个大于1的最小正因数,那么p一定是素数
素数有无穷多个(可以用迭代法证明 N = p 1 p 2 p 3 . . . p n + 1 ,其中 N 一定为素数) 素数有无穷多个(可以用迭代法证明N=p_1p_2p_3...p_n+1,其中N一定为素数) 素数有无穷多个(可以用迭代法证明N=p1p2p3...pn+1,其中N一定为素数)
2、Euclid算法
带余整除法(Euclid除法)
∀ a , b ∈ Z , b > 0 , 一定存在唯一整数 q , r , 使得 a = q b + r ( 0 ≤ r < b ) \forall a,b\in Z,b\gt 0,一定存在唯一整数q,r,使得a=qb+r(0\le r\lt b) ∀a,b∈Z,b>0,一定存在唯一整数q,r,使得a=qb+r(0≤r<b)
用数轴即可证明
带余整除法推论:
说白了就是辗转相除法计算最大公约数
( a , b ) = ( b , r ) = . . . = ( r 0 , 0 ) (a,b) = (b,r) = ... = (r_0, 0) (a,b)=(b,r)=...=(r0,0)
用整除法即可证明
最大公约数可写成gcd(a,b)
最大公约数的性质:
存在不全为 0 的 a 、 b ,若 d 为 a 和 b 的最大公约数,那么 d 一定是 { s a + t b ∣ s , t ∈ Z } 中最小的正整数 存在不全为0的a、b,若d为a和b的最大公约数,那么d一定是\{sa+tb|s,t\in Z\}中最小的正整数 存在不全为0的a、b,若d为a和b的最大公约数,那么d一定是{sa+tb∣s,t∈Z}中最小的正整数
3、扩展的Eculid算法
求sa+tb = (a,b)
用辗转相除法计算出最大公约数,再用最大公约数求a和b的系数s和t
可以用来求a模m的逆元:
若 ( a , m ) = 1 (a,m)=1 (a,m)=1,那么 s a + t m = 1 sa+tm=1 sa+tm=1,因为tm模m是0,所以s就是a的逆元
4、算术基本定理
有 a 、 b 、 c ,其中 b 、 c 不为 0 ,如果( a , c ) = 1 ,那么( a b , c ) = ( b , c ) 有a、b、c,其中b、c不为0,如果(a,c) = 1,那么(ab,c) = (b,c) 有a、b、c,其中b、c不为0,如果(a,c)=1,那么(ab,c)=(b,c)
[ a , b ] = a b / ( a , b ) [a,b] = ab/(a,b) [a,b]=ab/(a,b)
用整数的标准分解式可以证明,即素数的n次方的乘积形式,最大公约数的指数是最大的,最小公倍数的指数是最小的
算术基本定理:
任一整数n>1都可以表示成素数的乘积,且在不考虑素数的顺序情况下,该表达式是唯一的
N = p 1 p 2 . . . p n N=p_1p_2...p_n N=p1p2...pn
二、同余
1、同余和同余类
同余定理
设m是一个正整数,a,b是两个整数,则 a ≡ b m o d m a\equiv b\ mod\ m a≡b mod m,且充要条件是 a = b + k m / ( m ∣ a − b ) a=b+km\ /\ (m|a-b) a=b+km / (m∣a−b)
同余是一个等价关系,满足自反性、对称性、传递性
定理1:
若m为一个正整数,a,b,c,d是四个整数,如果 a ≡ b m o d m a\equiv b\ mod\ m a≡b mod m且 c ≡ d m o d m c\equiv d\ mod\ m c≡d mod m,则有 a + c ≡ b + d m o d m a+c\equiv b+d\ mod\ m a+c≡b+d mod m、 a c ≡ b d m o d m ac\equiv bd\ mod\ m ac≡bd mod m、 a n ≡ b n m o d m a^n\equiv b^n\ mod\ m an≡bn mod m
证明第二个:
m ∣ ( a − b ) c + ( c − d ) b m|(a-b)c+(c-d)b m∣(a−b)c+(c−d)b即可证明
第三个同理
定理2:
若m为正整数, a ≡ b m o d m a\equiv b\ mod\ m a≡b mod m, d ∣ ( a , b , m ) d|(a,b,m) d∣(a,b,m),那么 a d ≡ b d m o d m d \frac{a}{d}\equiv\frac{b}{d}\ mod\ \frac{m}{d} da≡db mod dm
若m为正整数, a ≡ b m o d m a\equiv b\ mod\ m a≡b mod m, d ∣ m d|m d∣m,那么 a ≡ b m o d d a\equiv b\ mod\ d a≡b mod d
定理3:
若 a k ≡ b k m o d m ak\equiv bk\ mod\ m ak≡bk mod m,那么 a ≡ b m o d m ( k , m ) a\equiv b\ mod\ \frac{m}{(k,m)} a≡b mod (k,m)m
证明:
由条件可得 m ∣ ( a , b ) k m|(a,b)k m∣(a,b)k,得 ( a − b ) k = q m (a-b)k=qm (a−b)k=qm,再同时除以 ( k , m ) (k,m) (k,m),证毕
定理4:
设m是正整数,整数a满足 ( a , m ) = 1 (a,m)=1 (a,m)=1,b是任意整数。若x遍历模m的一个完全剩余系,则 a x + b ax+b ax+b也遍历模m的一个完全剩余系
逆元:
设m是一个正整数,a是一个整数,如果存在整数b使得 a b ≡ 1 m o d m ab\equiv 1\ mod\ m ab≡1 mod m成立,则b是a的逆元
模m的剩余类:
Z m = { 0 ‾ , 1 ‾ , . . . , m − 1 ‾ } Z_m=\{\overline0,\overline1,...,\overline{m-1}\} Zm={0,1,...,m−1}
关于 a ‾ 在下一小节中有讲解 \overline{a}在下一小节中有讲解 a在下一小节中有讲解
最小非负完全剩余类:
在剩余类中挑选出小于m的的所有数构成的集合
2、简化剩余系、欧拉定理与费马小定理
既约剩余类 / 简化剩余类:
∀ a ∈ Z , a ‾ = { n ∈ Z ∣ n ≡ a m o d m } \forall a\in Z,\overline a=\{n\in Z|n\equiv a\ mod\ m\} ∀a∈Z,a={n∈Z∣n≡a mod m}
既约剩余系 / 简化剩余系:
设 m 为一个正整数,在模 m 的所有不同简化剩余系中,从每个剩余类中任取一个数组成的整数集合,叫做模 m 的一个既约(简化)剩余系 设m为一个正整数,在模m的所有不同简化剩余系中,从每个剩余类中任取一个数组成的整数集合,叫做模m的一个既约(简化)剩余系 设m为一个正整数,在模m的所有不同简化剩余系中,从每个剩余类中任取一个数组成的整数集合,叫做模m的一个既约(简化)剩余系
Z m ∗ = { a ‾ ∈ Z ∣ ( a , m ) = 1 } Z_m^*=\{\overline a\in Z|(a,m) = 1\} Zm∗={a∈Z∣(a,m)=1}
即在最小非负完全剩余类中抽取与m互质的元素构成的集合
∣ Z m ∗ ∣ = ϕ ( m ) |Z_m^*| = \phi(m) ∣Zm∗∣=ϕ(m)
定理1:
设m是正整数,整数a满足 ( a , m ) = 1 (a,m) = 1 (a,m)=1。若x遍历模m的一个简化剩余系,则ax也遍历模m的一个简化剩余系
关于欧拉函数 ϕ ( p ) \phi(p) ϕ(p):
若p为素数,则 ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p−1
若p为素数,且整数 α ≥ 1 \alpha \ge 1 α≥1,则 ϕ ( p α ) = p α − p α − 1 = p α ( 1 − 1 p ) \phi(p^{\alpha})=p^{\alpha}-p^{\alpha -1}=p^{\alpha}(1-\frac{1}{p}) ϕ(pα)=pα−pα−1=pα(1−p1)
若p、q为素数,则 ϕ ( p q ) = ϕ ( p ) ϕ ( q ) \phi(pq) = \phi(p) \phi(q) ϕ(pq)=ϕ(p)ϕ(q)
对于正整数n ϕ ( n ) = n Π p ∣ n ( 1 − 1 p ) \phi(n)=n\Pi_{p|n}(1-\frac{1}{p}) ϕ(n)=nΠp∣n(1−p1)
欧拉定理:
设m是大于1的整数,如果a是满足 ( a , m ) = 1 (a,m) =1 (a,m)=1的整数,则 a ϕ ( m ) ≡ 1 m o d m a^{\phi (m)}\equiv 1\ mod\ m aϕ(m)≡1 mod m
利用既约剩余系和定理1即可证明
可以用来求a的逆元,最后再取一下模就可以了
费马小定理(欧拉定理的推论):
设p是一个素数,则对于任意整数a,均有 a p ≡ a m o d p a^p\equiv a\ mod\ p ap≡a mod p
证明:考虑p和a是否是整除关系,分两类讨论;若是,则模运算结果总是0;若不是,则利用欧拉定理得 a p − 1 ≡ 1 m o d p a^{p-1}\equiv 1\ mod\ p ap−1≡1 mod p,再同时乘a证毕
可以用来求a的逆元,最后再取一下模就可以了
威尔森定理:
设p是一个素数,则 ( p − 1 ) ! ≡ − 1 m o d p (p-1)!\equiv -1\ mod\ p (p−1)!≡−1 mod p
三、同余式
1、一次同余式
设 m 是一个正整数, f ( x ) 为多项式且, f ( x ) = a n x n + . . . + a 1 x + a 0 m o d m 为同余式 设m是一个正整数,f(x)为多项式且,f(x)=a_nx^n+...+a_1x+a_0\ mod\ m为同余式 设m是一个正整数,f(x)为多项式且,f(x)=anxn+...+a1x+a0 mod m为同余式
若 x n 不同余 0 模 m ,则 n 叫做 f ( x ) 的次数, a n 为 f ( x ) 的首项系数 若x^n不同余0模m,则n叫做f(x)的次数,a_n为f(x)的首项系数 若xn不同余0模m,则n叫做f(x)的次数,an为f(x)的首项系数
若整数 a 满足 f ( a ) ≡ 0 m o d m ,那么 x ≡ a m o d m 叫做满足该同余式的解 若整数a满足f(a)\equiv 0\ mod\ m,那么x\equiv a\ mod\ m叫做满足该同余式的解 若整数a满足f(a)≡0 mod m,那么x≡a mod m叫做满足该同余式的解
事实上,满足 x ≡ a m o d m 的所有整数都能够使得该式成立,因此该一个剩余类叫做一个解 事实上,满足x\equiv a\ mod\ m的所有整数都能够使得该式成立,因此该一个剩余类叫做一个解 事实上,满足x≡a mod m的所有整数都能够使得该式成立,因此该一个剩余类叫做一个解
一次同余方程 a x ≡ b m o d m ax\equiv b\ mod\ m ax≡b mod m求解:
一次同余方程有解的充要条件是 ( a , m ) ∣ b (a,m)|b (a,m)∣b,且解的个数为 ( a , m ) (a,m) (a,m)个,证明如下:
解法如下:
这里在求逆元的时候不建议用费马小定理,因为求出来的可能不是最小的解(如果p恰好是素数,当然更加便于计算,但是最后记得要取模)
2、中国剩余定理CRT
定理证明:
唯一性证明:
3、RSA加密
四、二次同余式和平方剩余
1、二次同余式和平方剩余
设 m 为正整数,若同余式 x 2 ≡ a m o d m , ( a , m ) = 1 有解,则称 a 为模 m 的二次剩余,否则称为二次非剩余 设m为正整数,若同余式x^2\equiv a\ mod\ m,(a,m)=1有解,则称a为模m的二次剩余,否则称为二次非剩余 设m为正整数,若同余式x2≡a mod m,(a,m)=1有解,则称a为模m的二次剩余,否则称为二次非剩余
设 p 为素数,在 p 的一个简化剩余系中,恰有 p − 1 2 个模 p 的二次剩余,有 p − 1 2 个模 p 的二次非剩余 设p为素数,在p的一个简化剩余系中,恰有\frac{p-1}{2}个模p的二次剩余,有\frac{p-1}{2}个模p的二次非剩余 设p为素数,在p的一个简化剩余系中,恰有2p−1个模p的二次剩余,有2p−1个模p的二次非剩余
证明:思想是前后两两组合,过程略
Euler判定法则(判断a是否是模p的二次剩余)
设 p 是奇素数, ( a , p ) = 1 ,则 a 是模 p 的二次剩余的充要条件是 a p − 1 2 ≡ 1 m o d p , a 是模 p 的二次非剩余的充要条件是 a p − 1 2 ≡ − 1 m o d p 设p是奇素数,(a,p)=1,则a是模p的二次剩余的充要条件是a^{\frac{p-1}{2}}\equiv 1\ mod\ p,a是模p的二次非剩余的充要条件是a^{\frac{p-1}{2}}\equiv -1\ mod\ p 设p是奇素数,(a,p)=1,则a是模p的二次剩余的充要条件是a2p−1≡1 mod p,a是模p的二次非剩余的充要条件是a2p−1≡−1 mod p
注意:只针对p是素数的情况
2、勒让德符号及其计算方法
勒让德符号定义:
设 p 是素数, a 是整数,勒让德符号定义为: 设p是素数,a是整数,勒让德符号定义为: 设p是素数,a是整数,勒让德符号定义为:
若 a 是模 p 的二次剩余,那么 ( a p ) = 1 若a是模p的二次剩余,那么(\frac{a}{p})=1 若a是模p的二次剩余,那么(pa)=1
若 a 是模 p 的二次非剩余,那么 ( a p ) = − 1 若a是模p的二次非剩余,那么(\frac{a}{p})=-1 若a是模p的二次非剩余,那么(pa)=−1
若 p ∣ a ,那么 ( a p ) = 0 若p|a,那么(\frac{a}{p})=0 若p∣a,那么(pa)=0
勒让德符号性质:
( 1 p ) = 1 (\frac{1}{p})=1 (p1)=1
( a + p p ) = ( a p ) (\frac{a+p}{p})=(\frac{a}{p}) (pa+p)=(pa)
( a b p ) = ( a p ) ( b p ) (\frac{ab}{p})=(\frac{a}{p})(\frac{b}{p}) (pab)=(pa)(pb)
当 p ≡ 1 m o d 4 , ( − 1 p ) = 1 ;当 p ≡ 3 m o d 4 , ( − 1 p ) = − 1 当p\equiv1\ mod\ 4,(\frac{-1}{p})=1;当p\equiv3\ mod\ 4,(\frac{-1}{p})=-1 当p≡1 mod 4,(p−1)=1;当p≡3 mod 4,(p−1)=−1
当 p ≡ 1 、 7 m o d 8 , ( 2 p ) = 1 ;当 p ≡ 3 、 5 m o d 8 , ( 2 p ) = − 1 当p\equiv1、7\ mod\ 8,(\frac{2}{p})=1;当p\equiv3、5\ mod\ 8,(\frac{2}{p})=-1 当p≡1、7 mod 8,(p2)=1;当p≡3、5 mod 8,(p2)=−1
Euler判定法则(用勒让德表示,判断a是否是模p的二次剩余)
设 p 是素奇数,则对任意整数 a ,有 ( a p ) = a p − 1 2 m o d p 设p是素奇数,则对任意整数a,有(\frac{a}{p})=a^{\frac{p-1}{2}}\ mod\ p 设p是素奇数,则对任意整数a,有(pa)=a2p−1 mod p
设 p 是素奇数,则 ( ( 2 p ) = ( − 1 ) p 2 − 1 8 设p是素奇数,则((\frac{2}{p})=(-1)^{\frac{p^2-1}{8}} 设p是素奇数,则((p2)=(−1)8p2−1
二次互反律
设 p , q 是互素的奇素数,则 ( p q ) = ( − 1 ) p − 1 2 q − 1 2 ( q p ) 设p,q是互素的奇素数,则(\frac{p}{q})=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}(\frac{q}{p}) 设p,q是互素的奇素数,则(qp)=(−1)2p−12q−1(pq)
五、原根和指数
1、原根和阶的概念
设 m > 1 是整数, a 是正整数, ( a , m ) = 1 ,则使得 a x ≡ 1 m o d m 成立的最小正整数 x 叫做 a 模 m 的阶,记作 o r d m ( a ) 设m>1是整数,a是正整数,(a,m)=1,则使得a^x\equiv 1\ mod\ m成立的最小正整数x叫做a模m的阶,记作ord_m(a) 设m>1是整数,a是正整数,(a,m)=1,则使得ax≡1 mod m成立的最小正整数x叫做a模m的阶,记作ordm(a)
其中,根据欧拉定理可知,其解是一定存在的,最大为 ϕ ( m ) \phi(m) ϕ(m)
如果 o r d m ( a ) = ϕ ( m ) ,则 a 叫做 m 的 如果ord_m(a)=\phi(m),则a叫做m的 如果ordm(a)=ϕ(m),则a叫做m的原根
其中,一个质数一定存在原根,且原根的个数为 ϕ ( ϕ ( p ) ) \phi(\phi(p)) ϕ(ϕ(p))
除质数外,其他数不一定存在原根,例如8没有原根
性质:
① a ≡ b m o d m ,则 o r d m ( a ) = o r d m ( b ) ①a\equiv b\ mod\ m,则ord_m(a)=ord_m(b) ①a≡b mod m,则ordm(a)=ordm(b)
② a k ≡ a t m o d m ,则 k ≡ t m o d a ②a^k\equiv a^t\ mod\ m,则k\equiv t\ mod\ a ②ak≡at mod m,则k≡t mod a
③ o r d m ( a ) = o r d m ( a − 1 ) ③ord_m(a)=ord_m(a^{-1}) ③ordm(a)=ordm(a−1)
定理1:
设 m > 1 是整数, a 是正整数, ( a , m ) = 1 ,则整数 d 使得 a d ≡ 1 m o d m 成立的充要条件是 o r d m ( a ) ∣ d 设m>1是整数,a是正整数,(a,m)=1,则整数d使得a^d\equiv 1\ mod\ m成立的充要条件是ord_m(a)|d 设m>1是整数,a是正整数,(a,m)=1,则整数d使得ad≡1 mod m成立的充要条件是ordm(a)∣d
设 m > 1 是整数, a 是正整数, ( a , m ) = 1 ,则 o r d m ( a ) ∣ ϕ ( m ) 设m>1是整数,a是正整数,(a,m)=1,则ord_m(a)|\phi(m) 设m>1是整数,a是正整数,(a,m)=1,则ordm(a)∣ϕ(m)
(求原根的方法之一)
阶一定是 ϕ ( m ) 的因子或者它本身!!!所以在求原根时,可以通过试这些因子,来看是否阶只等于 ϕ ( m ) 来判断是否是原根 阶一定是\phi(m)的因子或者它本身!!!所以在求原根时,可以通过试这些因子,来看是否阶只等于\phi(m)来判断是否是原根 阶一定是ϕ(m)的因子或者它本身!!!所以在求原根时,可以通过试这些因子,来看是否阶只等于ϕ(m)来判断是否是原根
2、原根与阶的计算
定理1:
设 m > 1 , ϕ ( m ) 的所有不同素因子是 q 1 . . . q k ,则 g 是模 m 的一个原根的充要条件是 g ϕ ( m ) q i 不同模于 1 m o d m 设m>1,\phi(m)的所有不同素因子是q_1...q_k,则g是模m的一个原根的充要条件是g^{\frac{\phi(m)}{q_i}}不同模于1\ mod\ m 设m>1,ϕ(m)的所有不同素因子是q1...qk,则g是模m的一个原根的充要条件是gqiϕ(m)不同模于1 mod m
定理2:
设 m > 1 的整数, a 为整数且 ( a , m ) = 1 , d ≥ 0 为整数,则 o r d m ( a d ) = o r d m ( a ) ( o r d m ( a ) , d ) 设m>1的整数,a为整数且(a,m)=1,d\ge 0为整数,则ord_m(a^d)=\frac{ord_m(a)}{(ord_m(a),d)} 设m>1的整数,a为整数且(a,m)=1,d≥0为整数,则ordm(ad)=(ordm(a),d)ordm(a)
六、群
1、群的简介
代数系统(封闭性)——>半群(结合律)——>独异点(有单位元)——>群(有逆元)——>阿贝尔群(满足交换律)
单位元、逆元一定唯一
例子:
< Z , + > 是群 <Z,+>是群 <Z,+>是群
< Z , × > 不是群 <Z,×>不是群 <Z,×>不是群
< Q , × > 不是, 0 无逆元 <Q,×>不是,0无逆元 <Q,×>不是,0无逆元
< Q ∗ , × > (除去 0 )是群 <Q^*,×>(除去0)是群 <Q∗,×>(除去0)是群
< R , + > 是群 <R,+>是群 <R,+>是群
< R , × > 不是群 <R,×>不是群 <R,×>不是群
例子:
< Z m , + m o d > :是群, a 的逆元为 − a m o d m ,单位元为 0 ˉ <Z_m,+_{mod}>:是群,a的逆元为-a\ mod\ m,单位元为\bar0 <Zm,+mod>:是群,a的逆元为−a mod m,单位元为0ˉ
< Z m , × m o d > :不是群,因为逆元不一定存在 <Z_m,×_{mod}>:不是群,因为逆元不一定存在 <Zm,×mod>:不是群,因为逆元不一定存在
< Z m ∗ , × m o d > :是群,单位元为 1 ˉ (就是既约剩余系) <Z_m^*,×_{mod}>:是群,单位元为\bar 1(就是既约剩余系) <Zm∗,×mod>:是群,单位元为1ˉ(就是既约剩余系)
定理1:
若 a n = e ,则 o r d m ( a ) ∣ n 若a^n=e,则ord_m(a)|n 若an=e,则ordm(a)∣n
定理2:
∀ a ∈ G , ∣ a ∣ = ∣ a − 1 ∣ \forall a\in G,|a|=|a^{-1}| ∀a∈G,∣a∣=∣a−1∣
定理3:
∀ a ∈ G , ∣ a d ∣ = ∣ a ∣ ( d , ∣ a ∣ ) \forall a\in G,|a^d|=\frac{|a|}{(d,|a|)} ∀a∈G,∣ad∣=(d,∣a∣)∣a∣
2、子集、陪集、拉格朗日定理
子集:
设 H 是群 G 的一个非空子集,若对于非空群 G 的运算, H 成为一个群,则 H 叫做群 G 的子群,记作 H < G 设H是群G的一个非空子集,若对于非空群G的运算,H成为一个群,则H叫做群G的子群,记作H<G 设H是群G的一个非空子集,若对于非空群G的运算,H成为一个群,则H叫做群G的子群,记作H<G
{ e } 、 G 为 G 的平凡子群 \{e\}、G为G的平凡子群 {e}、G为G的平凡子群
子群的判定定理:
设群 H 是群 G 的一个非空子集,则 H 是 G 的非空子群的充要条件是 ∀ a , b ∈ G , a b − 1 ∈ H 设群H是群G的一个非空子集,则H是G的非空子群的充要条件是\forall a,b\in G,ab^{-1}\in H 设群H是群G的一个非空子集,则H是G的非空子群的充要条件是∀a,b∈G,ab−1∈H
陪集:
设 H 为 G 的子集, ∀ a ∈ G ,则称 a H = { a x ∣ x ∈ H } 为 G 的左陪集,同理 H a 为右陪集 设H为G的子集,\forall a\in G,则称aH=\{ax|x\in H\}为G的左陪集,同理Ha为右陪集 设H为G的子集,∀a∈G,则称aH={ax∣x∈H}为G的左陪集,同理Ha为右陪集
定理:
① a ∈ a H (单位元) ①a\in aH(单位元) ①a∈aH(单位元)
② a H = H ⟺ a ∈ H (① ⟹ ②) ②aH=H\iff a\in H(①\implies ②) ②aH=H⟺a∈H(①⟹②)
③ a H ⊂ G ⟺ a ∈ H (② ⟹ ③) ③aH\subset G\iff a\in H(②\implies ③) ③aH⊂G⟺a∈H(②⟹③)
④ a H = b H ⟺ a − 1 b ∈ H (② ⟹ ④) ④aH=bH\iff a^{-1}b\in H(②\implies ④) ④aH=bH⟺a−1b∈H(②⟹④)
⑤ a H = b H / a H ∩ b H = ∅ (两个陪集的关系有且仅有两种) ⑤aH=bH/aH\cap bH=\varnothing(两个陪集的关系有且仅有两种) ⑤aH=bH/aH∩bH=∅(两个陪集的关系有且仅有两种)
⑥ ∣ a H ∣ = ∣ b H ∣ ⑥|aH|=|bH| ⑥∣aH∣=∣bH∣
⑦ G = ∪ H a (所有陪集的并集) ⑦G=\cup Ha(所有陪集的并集) ⑦G=∪Ha(所有陪集的并集)
拉格朗日定理:
设 ∣ G ∣ = N , ∣ H ∣ = n , [ G : H ] = j 。因为 [ G : H ] = j ,即群 G 关于子群 H 的右陪集的个数是 j 。 设|G|=N,|H|=n,[G:H]=j。因为[G:H]=j,即群G关于子群H的右陪集的个数是j。 设∣G∣=N,∣H∣=n,[G:H]=j。因为[G:H]=j,即群G关于子群H的右陪集的个数是j。
G = H a 1 ∪ H a 2 ∪ … ∪ H a j ,则有 ∣ H a 1 ∣ = ∣ H a 2 ∣ = … ∣ H a j ∣ = n G=Ha_1\cup Ha_2\cup …\cup Ha_j,则有|Ha_1|=|Ha_2|=…|Ha_j|=n G=Ha1∪Ha2∪…∪Haj,则有∣Ha1∣=∣Ha2∣=…∣Haj∣=n
3、正规子群、商群、同态
正规子群:
设 G 是群, H < G ,若对于 G 中任何元素 a ,均有 a H = H a ,则 H 为 G 的正规子群,记为 H ⊲ G 设G是群,H<G,若对于G中任何元素a,均有aH=Ha,则H为G的正规子群,记为H\lhd G 设G是群,H<G,若对于G中任何元素a,均有aH=Ha,则H为G的正规子群,记为H⊲G
{ e } 、 G 是平凡正规子群 \{e\}、G是平凡正规子群 {e}、G是平凡正规子群
G 为 A b e l 群时,其任何子群均为正规子群 G为Abel群时,其任何子群均为正规子群 G为Abel群时,其任何子群均为正规子群
H 是 G 的正规子群,等价于:(互推) H是G的正规子群,等价于:(互推) H是G的正规子群,等价于:(互推)
① ∀ a ∈ G , h ∈ H , a h a − 1 ∈ H ①\forall a\in G,h\in H,aha^{-1}\in H ①∀a∈G,h∈H,aha−1∈H
② ∀ a ∈ G , a H a − 1 ⊂ H ②\forall a\in G,aHa^{-1}\subset H ②∀a∈G,aHa−1⊂H
③ ∀ a ∈ G , a H a − 1 = H ③\forall a\in G,aHa^{-1}=H ③∀a∈G,aHa−1=H
① ⟹ 前提 ⟹ ③ ⟹ ② ⟹ ① ①\implies 前提\implies ③\implies ②\implies ① ①⟹前提⟹③⟹②⟹①
商群:
设 H ⊲ G ,令 G / H = { a H ∣ a ∈ G } 代表正规子群 H 在群 G 中的全部不同的陪集组成的集合,在 G / H 上定义运算 ∗ : ( a H ) ∗ ( b H ) = ( a b ) H ,则 G / H 在该运算下构成一个群 设H\lhd G,令G/H=\{aH|a\in G\}代表正规子群H在群G中的全部不同的陪集组成的集合,在G/H上定义运算*:(aH)*(bH)=(ab)H,则G/H在该运算下构成一个群 设H⊲G,令G/H={aH∣a∈G}代表正规子群H在群G中的全部不同的陪集组成的集合,在G/H上定义运算∗:(aH)∗(bH)=(ab)H,则G/H在该运算下构成一个群
该群的单位元为 H , ( a H ) − 1 = a − 1 H 该群的单位元为H,(aH)^{-1}=a^{-1}H 该群的单位元为H,(aH)−1=a−1H
G / H 就是 G 关于 H 的商群 G/H就是G关于H的商群 G/H就是G关于H的商群
同态:
G 和 G ′ 是两个群, f 是 G 到 G ′ 的映射,如果对任意的 a , b ∈ G ,都有 f ( a b ) = f ( a ) f ( b ) ,则 f 为同态 G和G'是两个群,f是G到G'的映射,如果对任意的a,b\in G,都有f(ab)=f(a)f(b),则f为同态 G和G′是两个群,f是G到G′的映射,如果对任意的a,b∈G,都有f(ab)=f(a)f(b),则f为同态
自然同态:
G与G/H同态
f = ϕ θ f=\phi \theta f=ϕθ
f : G → G ′ ; ϕ : G / N → G ′ ; θ : G → G / N ,也就是从后往前看 f:G\to G';\phi:G/N\to G';\theta :G\to G/N,也就是从后往前看 f:G→G′;ϕ:G/N→G′;θ:G→G/N,也就是从后往前看
4、循环群
若 ∣ G ∣ = ∞ ,则 G = < a > = { e , a , a 2 , . . . , a n , . . . } 若|G|=\infty ,则G=<a>=\{e,a,a^2,...,a^n,...\} 若∣G∣=∞,则G=<a>={e,a,a2,...,an,...}
若 ∣ G ∣ = n < ∞ , 则 G = < a > = { e , a , a 2 , . . . , a n } 若|G|=n<\infty,则G=<a>=\{e,a,a^2,...,a^n\} 若∣G∣=n<∞,则G=<a>={e,a,a2,...,an}
设 p 为素数,则 Z p ∗ 为循环群,如 Z 5 ∗ = { 1 , 2 , 3 , 4 } = < 2 > = < 3 > 设p为素数,则Z_p^*为循环群,如Z_5^*=\{1,2,3,4\}=<2>=<3> 设p为素数,则Zp∗为循环群,如Z5∗={1,2,3,4}=<2>=<3>
同构的意义下,循环群仅有两个:
< Z , + > 无限群同构,且 = < 1 > = < − 1 > <Z,+>无限群同构,且=<1>=<-1> <Z,+>无限群同构,且=<1>=<−1>
< Z , + m o d > 有限群同构,且 = < 1 ˉ > <Z,+_{mod}>有限群同构,且=<\bar 1> <Z,+mod>有限群同构,且=<1ˉ>
5、置换群
置换群:
设 X 为非空集合,定义在 X 上的所有可逆映射,关于映射的复合运算所构成的一个群,称为定义在 X 上的对称群,即为 S x 设X为非空集合,定义在X上的所有可逆映射,关于映射的复合运算所构成的一个群,称为定义在X上的对称群,即为S_x 设X为非空集合,定义在X上的所有可逆映射,关于映射的复合运算所构成的一个群,称为定义在X上的对称群,即为Sx
S x 的任一子群,称为变换群。特别地,当 X 为有限集时,记 ∣ X ∣ = n ,则记 S x 为 S n ( n 次对称群),此时称变换群为置换群 S_x的任一子群,称为变换群。特别地,当X为有限集时,记|X|=n,则记S_x为S_n(n次对称群),此时称变换群为置换群 Sx的任一子群,称为变换群。特别地,当X为有限集时,记∣X∣=n,则记Sx为Sn(n次对称群),此时称变换群为置换群
总的来说,置换群就是有限集的对称群的子群 总的来说,置换群就是有限集的对称群的子群 总的来说,置换群就是有限集的对称群的子群
置换群不是 A b e l 群,不满足交换律 置换群不是Abel群,不满足交换律 置换群不是Abel群,不满足交换律
∣ S n ∣ = n ! |S_n|=n! ∣Sn∣=n!
设 σ ∈ S n ,若 σ 满足 σ ( i 1 ) = i 2 , σ ( i 2 ) = i 3 , . . . , σ ( i k − 1 ) = i k (因为双射使之成立),其中 1 ≤ k ≤ n ,且保持其他元素不变,这称置换 σ 为 k − 轮换,记作 σ = ( i 1 i 2 . . . i k ) 设\sigma \in S_n,若\sigma 满足\sigma(i_1)=i_2,\sigma(i_2)=i_3,...,\sigma(i_{k-1})=i_k(因为双射使之成立),其中1\le k\le n,且保持其他元素不变,这称置换\sigma为k-轮换,记作\sigma =(i_1i_2...i_k) 设σ∈Sn,若σ满足σ(i1)=i2,σ(i2)=i3,...,σ(ik−1)=ik(因为双射使之成立),其中1≤k≤n,且保持其他元素不变,这称置换σ为k−轮换,记作σ=(i1i2...ik)
当 k = 2 时,置换 ( i 1 i 2 ) 称为对换 当k=2时,置换(i_1i_2)称为对换 当k=2时,置换(i1i2)称为对换
1 − 轮换即为恒等置换 I ,即 ( 1 ) = ( 2 ) = . . . = ( n ) 1-轮换即为恒等置换I,即(1)=(2)=...=(n) 1−轮换即为恒等置换I,即(1)=(2)=...=(n)
两个循环置换中如果不存在相同的元素,则称这两个循环置换互不相交,例如 两个循环置换中如果不存在相同的元素,则称这两个循环置换互不相交,例如 两个循环置换中如果不存在相同的元素,则称这两个循环置换互不相交,例如
( 1 2 3 4 5 6 6 5 2 1 3 4 ) = ( 1 6 4 ) ( 2 5 3 ) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6\\ 6 & 5 & 2 & 1 & 3 & 4\\ \end{pmatrix} =(1\ 6\ 4)(2\ 5\ 3) (162532415364)=(1 6 4)(2 5 3)
任意一个置换都可以表示成一些不相交循环置换的乘积,如上
任意置换都可以分解成若干对换的乘积
σ = ( i 1 i 2 . . . i k ) = ( i 1 i 2 ) ( i 2 i 3 ) . . . ( i k − 1 i k ) \sigma =(i_1i_2...i_k)=(i_1i_2)(i_2i_3)...(i_{k-1}i_k) σ=(i1i2...ik)=(i1i2)(i2i3)...(ik−1ik)
七、环与域
1、环
定义——环:
设 R 非空,在 R 上引入两个运算 + ∗ ,若 < R , + > 构成 A b e l 群, < R , ∗ > 满足封闭性、结合律,且 ∗ 对于 + 的分配律成立,即 ∀ a , b , c ∈ R , a ∗ ( b + c ) = a ∗ b + a ∗ c , ( b + c ) ∗ a = b ∗ a + c ∗ a ,则 < R , + , ∗ > 为环 设R非空,在R上引入两个运算+*,若<R,+>构成Abel群,<R,*>满足封闭性、结合律,且*对于+的分配律成立,即\forall a,b,c\in R,a*(b+c)=a*b+a*c,(b+c)*a=b*a+c*a,则<R,+,*>为环 设R非空,在R上引入两个运算+∗,若<R,+>构成Abel群,<R,∗>满足封闭性、结合律,且∗对于+的分配律成立,即∀a,b,c∈R,a∗(b+c)=a∗b+a∗c,(b+c)∗a=b∗a+c∗a,则<R,+,∗>为环
定义——交换环:
若环 R 中, ∗ 满足构成交换半群,则 R 称为交换环 若环R中,*满足构成交换半群,则R称为交换环 若环R中,∗满足构成交换半群,则R称为交换环
定义——零元、单位元:
对于第一个运算而言:称其单位元为零元(一定存在) 对于第一个运算而言:称其单位元为零元(一定存在) 对于第一个运算而言:称其单位元为零元(一定存在)
对于第二个运算而言:若环 R 中 ∃ e , 使得 ∀ a ∈ R ,满足 e ∗ a = a ∗ e = a ,则称 e 为单位元(由定义可见,单位元不一定存在) 对于第二个运算而言:若环R中\exist e,使得\forall a\in R,满足e*a=a*e=a,则称e为单位元(由定义可见,单位元不一定存在) 对于第二个运算而言:若环R中∃e,使得∀a∈R,满足e∗a=a∗e=a,则称e为单位元(由定义可见,单位元不一定存在)
定义——负元、可逆元:
对于第一个运算而言:称其逆元为负元(一定存在) 对于第一个运算而言:称其逆元为负元(一定存在) 对于第一个运算而言:称其逆元为负元(一定存在)
对于第二个运算而言: ∀ a ∈ R ,若 ∃ b ∈ R ,使得 a ∗ b = b ∗ a = e ,则称 a 可逆, a 为可逆元, b 为 a 的逆元,可逆元也称为环 R 的 对于第二个运算而言:\forall a\in R,若\exist b\in R,使得a*b=b*a=e,则称a可逆,a为可逆元,b为a的逆元,可逆元也称为环R的 对于第二个运算而言:∀a∈R,若∃b∈R,使得a∗b=b∗a=e,则称a可逆,a为可逆元,b为a的逆元,可逆元也称为环R的单位 ,所有单位构成的群称为 R 的 ,所有单位构成的群称为R的 ,所有单位构成的群称为R的单位群 ,记作 U ( R ) ,记作U(R) ,记作U(R)
例子:
< Z , + , ∗ > :零元: 0 ,单位元: 1 , U ( Z ) = { 1 , − 1 } <Z,+,*>:零元:0,单位元:1,U(Z)=\{1,-1\} <Z,+,∗>:零元:0,单位元:1,U(Z)={1,−1}
< Z m , + , ∗ > :零元: 0 ˉ ,单位元: 1 ˉ , U ( Z ) = Z m ∗ <Z_m,+,*>:零元:\bar 0,单位元:\bar 1,U(Z)=Z_m^* <Zm,+,∗>:零元:0ˉ,单位元:1ˉ,U(Z)=Zm∗
定义——有零因子环:
设 R = < S , + , ∗ > 为一个环,若 ∃ a , b ∈ S ,满足 a , b ≠ 0 , a ∗ b = 0 ,则称 R 为有零因子环,否则为无零因子环, a 为左零因子, b 为右零因子,若一个元素是左、右零因子,则该元素为零因子。环内不是左、右零因子的元素为正则元 设R=<S,+,*>为一个环,若\exist a,b\in S,满足a,b\neq 0,a*b=0,则称R为有零因子环,否则为无零因子环,a为左零因子,b为右零因子,若一个元素是左、右零因子,则该元素为零因子。环内不是左、右零因子的元素为正则元 设R=<S,+,∗>为一个环,若∃a,b∈S,满足a,b=0,a∗b=0,则称R为有零因子环,否则为无零因子环,a为左零因子,b为右零因子,若一个元素是左、右零因子,则该元素为零因子。环内不是左、右零因子的元素为正则元
无零因子环中,消去律成立,即 ∀ a , b , c ∈ S , a ∗ c = b ∗ c ,且 c ≠ 0 ,则 a = b (值得注意的是,群中的消去律成立的原因是逆元存在,而环中消去律成立的原因是无零因子) 无零因子环中,消去律成立,即\forall a,b,c\in S,a*c=b*c,且c\neq 0,则a=b(值得注意的是,群中的消去律成立的原因是逆元存在,而环中消去律成立的原因是无零因子) 无零因子环中,消去律成立,即∀a,b,c∈S,a∗c=b∗c,且c=0,则a=b(值得注意的是,群中的消去律成立的原因是逆元存在,而环中消去律成立的原因是无零因子)
定义——子环:
设 R 为环, S 为非空子集,若 S 关于 R 的代数运算,亦构成环,则称 S 为 R 的子环,记作 S < R ,若 3 Z < Z , Z < Q , Z 3 不是 Z 的子环(运算不同) 设R为环,S为非空子集,若S关于R的代数运算,亦构成环,则称S为R的子环,记作S\lt R,若3Z\lt Z,Z\lt Q,Z_3不是Z的子环(运算不同) 设R为环,S为非空子集,若S关于R的代数运算,亦构成环,则称S为R的子环,记作S<R,若3Z<Z,Z<Q,Z3不是Z的子环(运算不同)
判定子环定理:
设 R 为环, S 为 R 的非空子集,则 S < R ⟺ ∀ a , b ∈ R 下, ∀ a , b ∈ S ,且 a − b ∈ S , a ∗ b ∈ S 设R为环,S为R的非空子集,则S\lt R \iff \forall a,b\in R下,\forall a,b \in S,且a-b\in S,a*b\in S 设R为环,S为R的非空子集,则S<R⟺∀a,b∈R下,∀a,b∈S,且a−b∈S,a∗b∈S
证明:使用了最基本的子群判定定理,即 a ∗ b − 1 ∈ S ,第一个运算要满足交换群,第二个运算要满足封闭性,结合律不需要考虑,因为元素本身即满足结合律 证明:使用了最基本的子群判定定理,即a*b^{-1}\in S,第一个运算要满足交换群,第二个运算要满足封闭性,结合律不需要考虑,因为元素本身即满足结合律 证明:使用了最基本的子群判定定理,即a∗b−1∈S,第一个运算要满足交换群,第二个运算要满足封闭性,结合律不需要考虑,因为元素本身即满足结合律
定义——整环
有单位元的无零因子的交换环为整环 有单位元的无零因子的交换环为整环 有单位元的无零因子的交换环为整环
其中, Z [ i ] = { a + b i ∣ a , b ∈ Z } 为高斯整环 其中,Z[i]=\{a+bi|a,b\in Z\}为高斯整环 其中,Z[i]={a+bi∣a,b∈Z}为高斯整环
定义——除环:
环 R 中每一个非零元都存在逆元,那么该环为除环 环R中每一个非零元都存在逆元,那么该环为除环 环R中每一个非零元都存在逆元,那么该环为除环
定义——域:
可交换的除环即为域,记作 F 可交换的除环即为域,记作F 可交换的除环即为域,记作F
即环满足交换律,且所有非零元有逆元 即环满足交换律,且所有非零元有逆元 即环满足交换律,且所有非零元有逆元
其中,对于素数 p , < Z p , + m o d , ∗ m o d > = F p 为最基本的有限域 其中,对于素数p,<Z_p,+_{mod},*_{mod}>=F_p为最基本的有限域 其中,对于素数p,<Zp,+mod,∗mod>=Fp为最基本的有限域
域的性质:
域一定是整环 域一定是整环 域一定是整环
整环不一定是域 整环不一定是域 整环不一定是域
有限整环一定是域 有限整环一定是域 有限整环一定是域
2、环同态、环同构
设 R , R ′ 是两个环,如果 f 满足对 ∀ a , b ∈ R ,都有 f ( a + b ) = f ( a ) + f ( b ) ,且 f ( a b ) = f ( a ) f ( b ) ,则称映射 f : R → R ′ 为环同态 设R,R'是两个环,如果f满足对\forall a,b\in R,都有f(a+b)=f(a)+f(b),且f(ab)=f(a)f(b),则称映射f:R\to R'为环同态 设R,R′是两个环,如果f满足对∀a,b∈R,都有f(a+b)=f(a)+f(b),且f(ab)=f(a)f(b),则称映射f:R→R′为环同态
如果 f 是一对一的,那么 f 是同构 如果f是一对一的,那么f是同构 如果f是一对一的,那么f是同构
值得注意的是,等号前面的+和等号后面的+是不同的,分别是R和R’的第一个运算
例子:
Z → Z m : f : n → n ˉ Z\to Z_m:f:n\to \bar n Z→Zm:f:n→nˉ
这个例子的意义是成功将 这个例子的意义是成功将 这个例子的意义是成功将无限环映射到有限环
定义:
设 R 为一个环,如果存在一个最小正整数 n 使得 ∀ a ∈ R ,都有 n a = 0 ,则称环 R 的特征为 n ,记作 c h a r ( R ) = n ,如果不存特征,那么 c h a r ( R ) = 0 设R为一个环,如果存在一个最小正整数n使得\forall a\in R,都有na=0,则称环R的特征为n,记作char(R)=n,如果不存特征,那么char(R)=0 设R为一个环,如果存在一个最小正整数n使得∀a∈R,都有na=0,则称环R的特征为n,记作char(R)=n,如果不存特征,那么char(R)=0
c h a r ( Z m ) = m char(Z_m)=m char(Zm)=m
性质:
整环 R , c h a r ( R ) = 0 / c h a r ( R ) = p 整环R,char(R)=0/char(R)=p 整环R,char(R)=0/char(R)=p
有限域的特征必为素数 \ 有限域的特征必为素数 有限域的特征必为素数
若 R 为可交换环,且 c h a r ( R ) = p ,则 ∀ a , b ∈ R , ( a + b ) p = a p + b p 若R为可交换环,且char(R)=p,则\forall a,b\in R,(a+b)^p=a^p+b^p 若R为可交换环,且char(R)=p,则∀a,b∈R,(a+b)p=ap+bp
3、子环、理想
定义——理想:
设 R 为环, I 为非空子集, ∀ r 1 , r 2 ∈ I ,有 r 1 − r 2 ∈ I ,且 ∀ r ∈ I , ∀ a ∈ R ,有 a r , r a ∈ I ,则 I 为 R 的理想,记作 I ⊲ R 设R为环,I为非空子集,\forall r_1,r_2\in I,有r_1-r_2\in I,且\forall r\in I,\forall a\in R,有ar,ra\in I,则I为R的理想,记作I\lhd R 设R为环,I为非空子集,∀r1,r2∈I,有r1−r2∈I,且∀r∈I,∀a∈R,有ar,ra∈I,则I为R的理想,记作I⊲R
{ 0 } 记为零理想, R 记为单位理想,二者统称为平凡理想 \{0\}记为零理想,R记为单位理想,二者统称为平凡理想 {0}记为零理想,R记为单位理想,二者统称为平凡理想
定义——单环:
有且仅有平凡理想的非零环记为单环,除环必为单环 有且仅有平凡理想的非零环记为单环,除环必为单环 有且仅有平凡理想的非零环记为单环,除环必为单环
设 R 是一个环, T 是 R 的一非空子集,则将 R 中所有包含 T 的理想的交集记为由 T 生成的理想,记作 < T > 。特别地,当 T = { a } 时,将 < T > 记为 < a > 并记为由 a 生成的主理想 设R是一个环,T是R的一非空子集,则将R中所有包含T的理想的交集记为由T生成的理想,记作<T>。特别地,当T=\{a\}时,将<T>记为<a>并记为由a生成的主理想 设R是一个环,T是R的一非空子集,则将R中所有包含T的理想的交集记为由T生成的理想,记作<T>。特别地,当T={a}时,将<T>记为<a>并记为由a生成的主理想
特别地,单号给 R 为含单位元的交换环, < a > = { a r ∣ r ∈ R } 特别地,单号给R为含单位元的交换环,<a>=\{ar|r\in R\} 特别地,单号给R为含单位元的交换环,<a>={ar∣r∈R}
性质——主理想
整数环 Z 中任一理想都是主理想 整数环Z中任一理想都是主理想 整数环Z中任一理想都是主理想
d Z = < d > , d Z ⊲ Z dZ=<d>,dZ\lhd Z dZ=<d>,dZ⊲Z
4、多项式环、多项式域
以下凡是环R的均可以换成域F
设 R 为含单位元的环, R [ x ] = { f ( x ) = a 0 + a 1 x 1 + . . . + a n x n ∣ a i ∈ R , n ∈ Z } 构成一个环,称为多项式环,单位元是 1 ,零元是 0 ,不一定可逆 设R为含单位元的环,R[x]=\{f(x)=a_0+a_1x_1+...+a_nx_n|a_i\in R,n\in Z\}构成一个环,称为多项式环,单位元是1,零元是0,不一定可逆 设R为含单位元的环,R[x]={f(x)=a0+a1x1+...+anxn∣ai∈R,n∈Z}构成一个环,称为多项式环,单位元是1,零元是0,不一定可逆
注意其中的关系,R[x]本身是一个环,F[x]本身也是一个环,但是其中的系数属于环或者域
定理:
设 f ( x ) , g ( x ) ∈ F [ x ] 且 g ( x ) ≠ 0 ,则 ∃ q ( x ) , r ( x ) ,存在 f ( x ) = q ( x ) g ( x ) + r ( x ) 且 r ( x ) = 0 或 d e g ( r ( x ) ) < d e g ( g ( x ) ) 设f(x),g(x)\in F[x]且g(x)\neq 0,则\exist q(x),r(x),存在f(x)=q(x)g(x)+r(x)且r(x)=0或deg(r(x))\lt deg(g(x)) 设f(x),g(x)∈F[x]且g(x)=0,则∃q(x),r(x),存在f(x)=q(x)g(x)+r(x)且r(x)=0或deg(r(x))<deg(g(x))
域上的代数运算与 Z 上的代数运算相同 域上的代数运算与Z上的代数运算相同 域上的代数运算与Z上的代数运算相同
定义——可约:
f ( x ) ∈ F [ x ] 且 f ( x ) 非常量,若 f ( x ) 除了和其自身以外无其他因式,则 f ( x ) 是不可约的 f(x)\in F[x]且f(x)非常量,若f(x)除了和其自身以外无其他因式,则f(x)是不可约的 f(x)∈F[x]且f(x)非常量,若f(x)除了和其自身以外无其他因式,则f(x)是不可约的
注意:多项式是否可约与其所在的系数域有关!约后的形式也与其有关
定义——公因式:
设 f ( x ) , g ( x ) ∈ F [ x ] ,若 d ( x ) ∣ f ( x ) ∧ d ( x ) ∣ g ( x ) ,约定 d ( x ) 首项系数为 1 ,则 d ( x ) ∣ d m a x ( x ) , d ( x ) = f ( x ) q ( x ) + g ( x ) r ( x ) 设f(x),g(x)\in F[x],若d(x)|f(x)\land d(x)|g(x),约定d(x)首项系数为1,则d(x)|d_{max}(x),d(x)=f(x)q(x)+g(x)r(x) 设f(x),g(x)∈F[x],若d(x)∣f(x)∧d(x)∣g(x),约定d(x)首项系数为1,则d(x)∣dmax(x),d(x)=f(x)q(x)+g(x)r(x)
多项式Euclid除法:
设 f ( x ) , g ( x ) ∈ R [ x ] ,则一定存在多项式 ) q ( x ) 、 r ( x ) 使得 d ( x ) = f ( x ) q ( x ) + g ( x ) r ( x ) , d e g r ( x ) < d e g g ( x ) 设f(x),g(x)\in R[x],则一定存在多项式)q(x)、r(x)使得d(x)=f(x)q(x)+g(x)r(x),deg\ r(x)\lt deg\ g(x) 设f(x),g(x)∈R[x],则一定存在多项式)q(x)、r(x)使得d(x)=f(x)q(x)+g(x)r(x),deg r(x)<deg g(x)
定理:
设 p ( x ) ∈ F [ x ] 且 p ( x ) 不可约,则 < p ( x ) > 为极大理想,从而 F [ x ] / < p ( x ) > 是一个域(任意有限域都与之同构) 设p(x)\in F[x]且p(x)不可约,则<p(x)>为极大理想,从而F[x]/<p(x)>是一个域(任意有限域都与之同构) 设p(x)∈F[x]且p(x)不可约,则<p(x)>为极大理想,从而F[x]/<p(x)>是一个域(任意有限域都与之同构)
特别地,当 F = F p ,则 ∣ F [ x ] / < p ( x ) > ∣ = p n ,记 F [ x ] / < p ( x ) > 为 F p n 特别地,当F=F_p,则|F[x]/<p(x)>|=p^n,记F[x]/<p(x)>为F_{p^n} 特别地,当F=Fp,则∣F[x]/<p(x)>∣=pn,记F[x]/<p(x)>为Fpn
定理:
设 f ( x ) ∈ F [ x ] ,则 f ( x ) 的次数最小的因式 p ( x ) 不可约且 d e g ( p ( x ) ) ≤ n 2 d e g ( f ( x ) ) 设f(x)\in F[x],则f(x)的次数最小的因式p(x)不可约且deg(p(x))\le \frac{n}{2}deg(f(x)) 设f(x)∈F[x],则f(x)的次数最小的因式p(x)不可约且deg(p(x))≤2ndeg(f(x))
推论:
设 f ( x ) ∈ F [ x ] , d e g ( f ( x ) ) = n , p 1 ( x ) , p 2 ( x ) , . . . , p m ( x ) 为 f ( x ) 的所有次数 ≤ n 2 的不可约多项式,若 p i 不能整除 f ( x ) ,那么 f ( x ) 不可约 设f(x)\in F[x],deg(f(x))=n,p_1(x),p_2(x),...,p_m(x)为f(x)的所有次数\le \frac{n}{2}的不可约多项式,若p_i不能整除f(x),那么f(x)不可约 设f(x)∈F[x],deg(f(x))=n,p1(x),p2(x),...,pm(x)为f(x)的所有次数≤2n的不可约多项式,若pi不能整除f(x),那么f(x)不可约
八、椭圆曲线
1、椭圆曲线的概念
定义——椭圆曲线:
定义在 F p 上的椭圆曲线, E p ( a , b ) = { ( x , y ) ∣ y 2 = x 3 + a x + b , 4 a 2 + 27 b 2 ≠ 0 , a , b ∈ F p } ∪ { ∂ } 定义在F_p上的椭圆曲线,E_p(a,b)=\{(x,y)|y^2=x^3+ax+b,4a^2+27b^2\neq 0,a,b\in F_p\}\cup \{\partial\} 定义在Fp上的椭圆曲线,Ep(a,b)={(x,y)∣y2=x3+ax+b,4a2+27b2=0,a,b∈Fp}∪{∂}
2、椭圆曲线群的构造
定义——椭圆曲线群:
在 E p ( a , b ) 上引入代数运算 + ,构成 A b e l 群 在E_p(a,b)上引入代数运算+,构成Abel群 在Ep(a,b)上引入代数运算+,构成Abel群
其满足封闭性和结合律,单位元是 ∂ ,逆元就是横坐标不变,纵坐标变成相反数 其满足封闭性和结合律,单位元是\partial,逆元就是横坐标不变,纵坐标变成相反数 其满足封闭性和结合律,单位元是∂,逆元就是横坐标不变,纵坐标变成相反数
运算定义:
运算公式:
设 P ( x 1 , x 2 ) , Q ( x 2 , y 2 ) , R ( x 3 , y 3 ) = P + Q 设P(x_1,x_2),Q(x_2,y_2),R(x_3,y_3)=P+Q 设P(x1,x2),Q(x2,y2),R(x3,y3)=P+Q
⟹ { x 3 = λ 2 − x 1 − x 2 y 3 = λ ( x 1 − x 3 ) − y 1 \implies \begin{cases} x_3=\lambda ^2-x_1-x_2\\ y_3=\lambda (x_1-x_3)-y_1 \end{cases} ⟹{x3=λ2−x1−x2y3=λ(x1−x3)−y1
其中 λ = { y 2 − y 1 x 2 − x 1 , P=/Q 3 x 2 + a 2 y , P=Q 其中\lambda= \begin{cases} \frac{y_2-y_1}{x_2-x_1}, & \text{P=/Q} \\[2ex] \frac{3x^2+a}{2y}, & \text{P=Q} \end{cases} 其中λ=⎩ ⎨ ⎧x2−x1y2−y1,2y3x2+a,P=/QP=Q