信息安全数学基础(复习自用)(持续更新中)

一、整除

1、整除的概念

整除的概念
∀ a , b ∈ Z , 且 b ≠ 0 , 如果存在一个整数 q , 使得 a = q b 成立 , 则称为 b 整除 a , 或者 a 被 b 整除 , 记作 b ∣ a \forall a,b\in Z,且b\neq 0,如果存在一个整数q,使得a=qb成立,则称为b整除a,或者a被b整除,记作b|a a,bZ,b=0,如果存在一个整数q,使得a=qb成立,则称为b整除a,或者ab整除,记作ba

整除的性质:
若 c ∣ a , c ∣ b ,那么 c ∣ s a + t b ( s , t ∈ Z ) 若c|a,c|b,那么c|sa+tb(s,t\in Z) cacb,那么csa+tb(s,tZ)

素数的性质:
若 n 是一个正合数, p 是 n 的一个大于 1 的最小正因数,那么 p 一定是素数 若n是一个正合数,p是n的一个大于1的最小正因数,那么p一定是素数 n是一个正合数,pn的一个大于1的最小正因数,那么p一定是素数
素数有无穷多个(可以用迭代法证明 N = p 1 p 2 p 3 . . . p n + 1 ,其中 N 一定为素数) 素数有无穷多个(可以用迭代法证明N=p_1p_2p_3...p_n+1,其中N一定为素数) 素数有无穷多个(可以用迭代法证明N=p1p2p3...pn+1,其中N一定为素数)

2、Euclid算法

带余整除法(Euclid除法)
∀ a , b ∈ Z , b > 0 , 一定存在唯一整数 q , r , 使得 a = q b + r ( 0 ≤ r ≤ b ) \forall a,b\in Z,b\gt 0,一定存在唯一整数q,r,使得a=qb+r(0\le r\le b) a,bZ,b>0,一定存在唯一整数q,r,使得a=qb+r(0rb)
用数轴即可证明

带余整除法推论:
说白了就是辗转相除法计算最大公约数
( a , b ) = ( b , r ) = . . . = ( r 0 , 0 ) (a,b) = (b,r) = ... = (r_0, 0) (a,b)=(b,r)=...=(r0,0)
用整除法即可证明
在这里插入图片描述
最大公约数可写成gcd(a,b)

最大公约数的性质:
存在不全为 0 的 a 、 b ,若 d 为 a 和 b 的最大公约数,那么 d 一定是 { s a + t b ∣ s , t ∈ Z } 中最小的正整数 存在不全为0的a、b,若d为a和b的最大公约数,那么d一定是\{sa+tb|s,t\in Z\}中最小的正整数 存在不全为0ab,若dab的最大公约数,那么d一定是{sa+tbs,tZ}中最小的正整数

3、扩展的Eculid算法

求sa+tb = (a,b)
用辗转相除法计算出最大公约数,再用最大公约数求a和b的系数s和t

可以用来求a模m的逆元:
( a , m ) = 1 (a,m)=1 (a,m)=1,那么 s a + t m = 1 sa+tm=1 sa+tm=1,因为tm模m是0,所以s就是a的逆元

4、算术基本定理

有 a 、 b 、 c ,其中 b 、 c 不为 0 ,如果( a , c ) = 1 ,那么( a b , c ) = ( b , c ) 有a、b、c,其中b、c不为0,如果(a,c) = 1,那么(ab,c) = (b,c) abc,其中bc不为0,如果(a,c=1,那么(ab,c=b,c

[ a , b ] = a b / ( a , b ) [a,b] = ab/(a,b) [a,b]=ab/(a,b)
用整数的标准分解式可以证明,即素数的n次方的乘积形式,最大公约数的指数是最大的,最小公倍数的指数是最小的

算术基本定理:
任一整数n>1都可以表示成素数的乘积,且在不考虑素数的顺序情况下,该表达式是唯一的
N = p 1 p 2 . . . p n N=p_1p_2...p_n N=p1p2...pn

二、同余

1、同余和同余类

同余定理
设m是一个正整数,a,b是两个整数,则 a ≡ b   m o d   m a\equiv b\ mod\ m ab mod m,且充要条件是 a = b + k m   /   ( m ∣ a − b ) a=b+km\ /\ (m|a-b) a=b+km / (mab)

同余是一个等价关系,满足自反性、对称性、传递性

定理1:
若m为一个正整数,a,b,c,d是四个整数,如果 a ≡ b   m o d   m a\equiv b\ mod\ m ab mod m c ≡ d   m o d   m c\equiv d\ mod\ m cd mod m,则有 a + c ≡ b + d   m o d   m a+c\equiv b+d\ mod\ m a+cb+d mod m a c ≡ b d   m o d   m ac\equiv bd\ mod\ m acbd mod m a n ≡ b n   m o d   m a^n\equiv b^n\ mod\ m anbn mod m
证明第二个:
m ∣ ( a − b ) c + ( c − d ) b m|(a-b)c+(c-d)b m(ab)c+(cd)b即可证明
第三个同理

定理2:
若m为正整数, a ≡ b   m o d   m a\equiv b\ mod\ m ab mod m d ∣ ( a , b , m ) d|(a,b,m) d(a,b,m),那么 a d ≡ b d   m o d   m d \frac{a}{d}\equiv\frac{b}{d}\ mod\ \frac{m}{d} dadb mod dm
若m为正整数, a ≡ b   m o d   m a\equiv b\ mod\ m ab mod m d ∣ m d|m dm,那么 a ≡ b   m o d   d a\equiv b\ mod\ d ab mod d

定理3:
a k ≡ b k   m o d   m ak\equiv bk\ mod\ m akbk mod m,那么 a ≡ b   m o d   m ( k , m ) a\equiv b\ mod\ \frac{m}{(k,m)} ab mod (k,m)m
证明:
由条件可得 m ∣ ( a , b ) k m|(a,b)k m(a,b)k,得 ( a − b ) k = q m (a-b)k=qm (ab)k=qm,再同时除以 ( k , m ) (k,m) (k,m),证毕

定理4:
设m是正整数,整数a满足 ( a , m ) = 1 (a,m)=1 (a,m)=1,b是任意整数。若x遍历模m的一个完全剩余系,则 a x + b ax+b ax+b也遍历模m的一个完全剩余系

逆元:
设m是一个正整数,a是一个整数,如果存在整数b使得 a b ≡ 1   m o d   m ab\equiv 1\ mod\ m ab1 mod m成立,则b是a的逆元

模m得剩余类:
Z m = { 0 ‾ , 1 ‾ , . . . , m − 1 ‾ } Z_m=\{\overline0,\overline1,...,\overline{m-1}\} Zm={0,1,...,m1}
关于 a ‾ \overline{a} a
∀ a ∈ Z , a ‾ = { n ∈ Z ∣ n ≡ a   m o d   m } \forall a\in Z,\overline a=\{n\in Z|n\equiv a\ mod\ m\} aZ,a={nZna mod m}

最小非负完全剩余类:
在剩余类中挑选出小于m的的所有数构成的集合

2、简化剩余系、欧拉定理与费马小定理

既约剩余类 / 简化剩余类:
Z m ∗ = { a ‾ ∈ Z ∣ ( a , m ) = 1 } Z_m^*=\{\overline a\in Z|(a,m) = 1\} Zm={aZ(a,m)=1}
即在最小非负完全剩余类中抽取与m互质的元素构成的集合
∣ Z m ∗ ∣ = ϕ ( m ) |Z_m^*| = \phi(m) Zm=ϕ(m)

定理1:
设m是正整数,整数a满足 ( a , m ) = 1 (a,m) = 1 (a,m)=1。若x遍历模m的一个简化剩余系,则ax也遍历模m的一个简化剩余系

关于欧拉函数 ϕ ( p ) \phi(p) ϕ(p)
若p为素数,则 ϕ ( p ) = p − 1 \phi(p)=p-1 ϕ(p)=p1
若p为素数,且整数 α ≥ 1 \alpha \ge 1 α1,则 ϕ ( p α ) = p α − p α − 1 \phi(p^{\alpha})=p^{\alpha}-p^{\alpha -1} ϕ(pα)=pαpα1
若p、q为素数,则 ϕ ( p q ) = ϕ ( p ) ϕ ( q ) \phi(pq) = \phi(p) \phi(q) ϕ(pq)=ϕ(p)ϕ(q)

欧拉定理:
设m是大于1的整数,如果a是满足 ( a , m ) = 1 (a,m) =1 (a,m)=1的整数,则 a ϕ ( m ) ≡ 1   m o d   m a^{\phi (m)}\equiv 1\ mod\ m aϕ(m)1 mod m
利用既约剩余系和定理1即可证明
可以用来求a的逆元

费马小定理(欧拉定理的推论):
设p是一个素数,则对于任意整数a,均有 a p ≡ a   m o d   p a^p\equiv a\ mod\ p apa mod p
证明:考虑p和a是否是整除关系,分两类讨论;若是,则模运算结果总是0;若不是,则利用欧拉定理得 a p − 1 ≡ 1   m o d   p a^{p-1}\equiv 1\ mod\ p ap11 mod p,再同时乘a证毕
可以用来求a的逆元

威尔森定理:
设p是一个素数,则 ( p − 1 ) ! ≡ − 1   m o d   p (p-1)!\equiv -1\ mod\ p (p1)!1 mod p

在这里插入图片描述

三、同余式

1、一次同余式

设 m 是一个正整数, f ( x ) 为多项式且, f ( x ) = a n x n + . . . + a 1 x + a 0   m o d   m 为同余式 设m是一个正整数,f(x)为多项式且,f(x)=a_nx^n+...+a_1x+a_0\ mod\ m为同余式 m是一个正整数,f(x)为多项式且,f(x)=anxn+...+a1x+a0 mod m为同余式
若 a n 不同余 0 模 m ,则 n 叫做 f ( x ) 的次数, a n 为 f ( x ) 的首项系数 若a^n不同余0模m,则n叫做f(x)的次数,a_n为f(x)的首项系数 an不同余0m,则n叫做f(x)的次数,anf(x)的首项系数

若整数 a 满足 f ( a ) ≡ 0   m o d   m ,那么 x ≡ a   m o d   m 叫做满足该同余式的解 若整数a满足f(a)\equiv 0\ mod\ m,那么x\equiv a\ mod\ m叫做满足该同余式的解 若整数a满足f(a)0 mod m,那么xa mod m叫做满足该同余式的解

事实上,满足 x ≡ a   m o d   m 的所有整数都能够使得该式成立,因此该一个剩余类叫做一个解 事实上,满足x\equiv a\ mod\ m的所有整数都能够使得该式成立,因此该一个剩余类叫做一个解 事实上,满足xa mod m的所有整数都能够使得该式成立,因此该一个剩余类叫做一个解

一次同余方程 a x ≡ b   m o d   m ax\equiv b\ mod\ m axb mod m求解:
一次同余方程有解的充要条件是 ( a , m ) ∣ b (a,m)|b a,mb,且解的个数为 ( a , m ) (a,m) (a,m)个,证明如下:
在这里插入图片描述
解法如下:
在这里插入图片描述

2、中国剩余定理CRT

在这里插入图片描述
定理证明:
在这里插入图片描述
唯一性证明:
在这里插入图片描述

四、二次同余式和平方剩余

1、二次同余式和平方剩余

设 m 为正整数,若同余式 x 2 ≡ a   m o d   m , ( a , m ) = 1 有解,则称 a 为模 m 的二次剩余,否则称为二次非剩余 设m为正整数,若同余式x^2\equiv a\ mod\ m,(a,m)=1有解,则称a为模m的二次剩余,否则称为二次非剩余 m为正整数,若同余式x2a mod m,(a,m)=1有解,则称a为模m的二次剩余,否则称为二次非剩余

设 p 为素数,在 p 的一个简化剩余系中,恰有 p − 1 2 个模 p 的二次剩余,有 p − 1 2 个模 p 的二次非剩余 设p为素数,在p的一个简化剩余系中,恰有\frac{p-1}{2}个模p的二次剩余,有\frac{p-1}{2}个模p的二次非剩余 p为素数,在p的一个简化剩余系中,恰有2p1个模p的二次剩余,有2p1个模p的二次非剩余
证明:思想是前后两两组合,过程略

Euler判定法则(判断a是否是模p的二次剩余)
设 p 是奇素数, ( a , p ) = 1 ,则 a 是模 p 的二次剩余的充要条件是 a p − 1 2 ≡ 1   m o d   p , a 是模 p 的二次非剩余的充要条件是 a p − 1 2 ≡ − 1   m o d   p 设p是奇素数,(a,p)=1,则a是模p的二次剩余的充要条件是a^{\frac{p-1}{2}}\equiv 1\ mod\ p,a是模p的二次非剩余的充要条件是a^{\frac{p-1}{2}}\equiv -1\ mod\ p p是奇素数,(a,p)=1,则a是模p的二次剩余的充要条件是a2p11 mod pa是模p的二次非剩余的充要条件是a2p11 mod p
注意:只针对p是素数的情况

2、勒让德符号机器计算方法

勒让德符号定义:
设 p 是素数, a 是整数,勒让德符号定义为: 设p是素数,a是整数,勒让德符号定义为: p是素数,a是整数,勒让德符号定义为:
若 a 是模 p 的二次剩余,那么 ( a p ) = 1 若a是模p的二次剩余,那么(\frac{a}{p})=1 a是模p的二次剩余,那么(pa)=1
若 a 是模 p 的二次非剩余,那么 ( a p ) = − 1 若a是模p的二次非剩余,那么(\frac{a}{p})=-1 a是模p的二次非剩余,那么(pa)=1
若 p ∣ a ,那么 ( a p ) = 0 若p|a,那么(\frac{a}{p})=0 pa,那么(pa)=0

勒让德符号性质:
( 1 p ) = 1 (\frac{1}{p})=1 (p1)=1
( a + p p ) = ( a p ) (\frac{a+p}{p})=(\frac{a}{p}) (pa+p)=(pa)
( a b p ) = ( a p ) ( b p ) (\frac{ab}{p})=(\frac{a}{p})(\frac{b}{p}) (pab)=(pa)(pb)
当 p ≡ 1   m o d   4 , ( − 1 p ) = 1 ;当 p ≡ 3   m o d   4 , ( − 1 p ) = − 1 当p\equiv1\ mod\ 4,(\frac{-1}{p})=1;当p\equiv3\ mod\ 4,(\frac{-1}{p})=-1 p1 mod 4(p1)=1;当p3 mod 4(p1)=1
当 p ≡ 1 、 7   m o d   8 , ( 2 p ) = 1 ;当 p ≡ 3 、 5   m o d   8 , ( 2 p ) = − 1 当p\equiv1、7\ mod\ 8,(\frac{2}{p})=1;当p\equiv3、5\ mod\ 8,(\frac{2}{p})=-1 p17 mod 8(p2)=1;当p35 mod 8(p2)=1

Euler判定法则(用勒让德表示,判断a是否是模p的二次剩余)
设 p 是素奇数,则对任意整数 a ,有 ( a p ) = a p − 1 2   m o d   p 设p是素奇数,则对任意整数a,有(\frac{a}{p})=a^{\frac{p-1}{2}}\ mod\ p p是素奇数,则对任意整数a,有(pa)=a2p1 mod p

二次互反律
设 p , q 是互素的奇素数,则 ( p q ) = ( − 1 ) p − 1 2 q − 1 2 ( q p ) 设p,q是互素的奇素数,则(\frac{p}{q})=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}(\frac{q}{p}) p,q是互素的奇素数,则(qp)=(1)2p12q1(pq)

五、原根和指数

1、原根和阶的概念

设 m > 1 是整数, a 是正整数, ( a , m ) = 1 ,则使得 a x ≡ 1   m o d   m 成立的最小正整数 x 叫做 a 模 m 的阶,记作 o r d m ( a ) 设m>1是整数,a是正整数,(a,m)=1,则使得a^x\equiv 1\ mod\ m成立的最小正整数x叫做a模m的阶,记作ord_m(a) m>1是整数,a是正整数,(a,m)=1,则使得ax1 mod m成立的最小正整数x叫做am的阶,记作ordm(a)
其中,根据欧拉定理可知,其解是一定存在的,最大为 ϕ ( m ) \phi(m) ϕ(m)

如果 o r d m ( a ) = ϕ ( m ) ,则 a 叫做 m 的 如果ord_m(a)=\phi(m),则a叫做m的 如果ordm(a)=ϕ(m),则a叫做m原根
其中,一个质数一定存在原根,且原根的个数为 ϕ ( ϕ ( p ) ) \phi(\phi(p)) ϕ(ϕ(p))
除质数外,其他数不一定存在原根,例如8没有原根

性质:
① a ≡ b   m o d   m ,则 o r d m ( a ) = o r d m ( b ) ①a\equiv b\ mod\ m,则ord_m(a)=ord_m(b) ab mod m,则ordm(a)=ordm(b)
② a k ≡ a t   m o d   m ,则 k ≡ t   m o d   o r d m ( m ) ②a^k\equiv a^t\ mod\ m,则k\equiv t\ mod\ ord_m(m) akat mod m,则kt mod ordm(m)
③ o r d m ( a ) = o r d m ( a − 1 ) ③ord_m(a)=ord_m(a^{-1}) ordm(a)=ordm(a1)

定理1:
设 m > 1 是整数, a 是正整数, ( a , m ) = 1 ,则整数 d 使得 a d ≡ 1   m o d   m 成立的充要条件是 o r d m ( a ) ∣ d 设m>1是整数,a是正整数,(a,m)=1,则整数d使得a^d\equiv 1\ mod\ m成立的充要条件是ord_m(a)|d m>1是整数,a是正整数,(a,m)=1,则整数d使得ad1 mod m成立的充要条件是ordm(a)d

设 m > 1 是整数, a 是正整数, ( a , m ) = 1 ,则 o r d m ( a ) ∣ ϕ ( m ) 设m>1是整数,a是正整数,(a,m)=1,则ord_m(a)|\phi(m) m>1是整数,a是正整数,(a,m)=1,则ordm(a)ϕ(m)
(求原根的方法之一)

2、原根与阶的计算

定理1:
设 m > 1 , ϕ ( m ) 的所有不同素因子是 q 1 . . . q k ,则 g 是模 m 的一个原根的充要条件是 g ϕ ( m ) q i 不同模于 1   m o d   m 设m>1,\phi(m)的所有不同素因子是q_1...q_k,则g是模m的一个原根的充要条件是g^{\frac{\phi(m)}{q_i}}不同模于1\ mod\ m m>1ϕ(m)的所有不同素因子是q1...qk,则g是模m的一个原根的充要条件是gqiϕ(m)不同模于1 mod m

定理2:
设 m > 1 的整数, a 为整数且 ( a , m ) = 1 , d ≥ 0 为整数,则 o r d m ( a d ) = o r d m ( a ) ( o r d m ( a ) , d ) 设m>1的整数,a为整数且(a,m)=1,d\ge 0为整数,则ord_m(a^d)=\frac{ord_m(a)}{(ord_m(a),d)} m>1的整数,a为整数且(a,m)=1d0为整数,则ordm(ad)=(ordm(a),d)ordm(a)

六、群

1、群的简介

代数系统(封闭性)——>半群(结合律)——>独异点(有单位元)——>群(有逆元)——>阿贝尔群(满足交换律)

单位元、逆元一定唯一

例子:
< Z , + > 是群 <Z,+>是群 <Z,+>是群
< Z , × > 不是群 <Z,×>不是群 <Z,×>不是群
< Q , × > 不是, 0 无逆元 <Q,×>不是,0无逆元 <Q,×>不是,0无逆元
< Q ∗ , × > (除去 0 )是群 <Q^*,×>(除去0)是群 <Q,×>(除去0)是群
< R , + > 是群 <R,+>是群 <R,+>是群
< R , × > 不是群 <R,×>不是群 <R,×>不是群

例子:
< Z m , + m o d > :是群, a 的逆元为 − a   m o d   m ,单位元为 0 ˉ <Z_m,+_{mod}>:是群,a的逆元为-a\ mod\ m,单位元为\bar0 <Zm,+mod>:是群,a的逆元为a mod m,单位元为0ˉ
< Z m , × m o d > :不是群,因为逆元不一定存在 <Z_m,×_{mod}>:不是群,因为逆元不一定存在 <Zm,×mod>:不是群,因为逆元不一定存在
< Z m ∗ , × m o d > :是群,单位元为 1 ˉ (就是既约剩余系) <Z_m^*,×_{mod}>:是群,单位元为\bar 1(就是既约剩余系) <Zm,×mod>:是群,单位元为1ˉ(就是既约剩余系)

定理1:
若 a n = e ,则 o r d m ( a ) ∣ n 若a^n=e,则ord_m(a)|n an=e,则ordm(a)n

定理2:
∀ a ∈ G , ∣ a ∣ = ∣ a − 1 ∣ \forall a\in G,|a|=|a^{-1}| aGa=a1

定理3:
∀ a ∈ G , ∣ a d ∣ = ∣ a ∣ ( d , ∣ a ∣ ) \forall a\in G,|a^d|=\frac{|a|}{(d,|a|)} aGad=(d,a)a

2、子集、陪集、拉格朗日定理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值