一、电路基本概念
1、基本物理量
(1)电流:注意参考方向
(2)关联参考方向:
注:在分析电源时尤其注意(个人也是在这里栽过坑)正常流过电源的电流方向对于电源来说是非关联参考方向
(3)做题关注点:
判断参考方向——>判断关联参考方向与否——>注意是吸收功率or发出功率(添加负号)——>最后判断结果的正负号
2、电路基本原件
(1)电感:
①感应电压:
u = d ϕ d t = L d i d t u = {d\phi \over dt} = L{di \over dt} u=dtdϕ=Ldtdi
L为电感量,单位是亨利H;磁通量变化才会产生感应电压
②存储能量:
w = 1 2 L i 2 w = {1 \over 2}Li^2 w=21Li2
③其为记忆元件:
i ( t ) = 1 L ∫ ∞ t u ( t ) d t i(t) = {1 \over L}\int_\infty^t u(t)dt i(t)=L1∫∞tu(t)dt
(2)电容:
①感应电流:
i = d q d t = C d u d t i = {dq \over dt} = C{du \over dt} i=dtdq=Cdtdu
C为电容量,单位是法拉F
②存储能量:
w = 1 2 C u 2 w = {1 \over 2}Cu^2 w=21Cu2
(3)理想电压源:恒压不恒流
(4)理想电流源:恒流不恒压
二、电路基本定律和等效变换
回路:由支路构成的闭合路径
网孔回路:在回路中没有别的支路(分为内网孔和外网孔)
1、欧姆定律(支路约束)
2、基尔霍夫定律(拓扑约束)
(1)KCL:
①定义:在任一集中参数电路,在任意时刻,流出和流入一节点的电流代数和等于零
②流入为正,流出为负
③其应用可以拓展至面,即给出局部电路
(2)KVL:
①定义:造任一集中参数电路,在任意时刻,沿任一回路,各支路电压的代数和为零
②电压降为正,电压升为负
③旋转方向任意
④其应用可以拓展至开路(尤其是后面学习到无源单口网络更为实用)
3、四大电阻、电源、受控源、无源单口网络的等效变换
对外等效,对内不等效!!!内部求参数的时候要还原到化简前的电路中去,研究外部电路才用等效电路图
标清节点是一个好习惯
要想掌握这一节的内容还是多练练题吧,不练题真的没用
(1)电阻
①串并联转换:做题时候细心点!!!注意别看错!!!如何判断能否化简呢?看是否是流过同一电流,是否是加了同一电压
②星形和三角形连接及转换
要求对这两种模型的一般接法样式敏感,能够抽离出这两种重要的模型
Ⅰ、▲——>Y(对角乘积比总和)
R 1 = R b R c R a + R b + R c R1 = {Rb Rc \over Ra + Rb + Rc} R1=Ra+Rb+RcRbRc
R 2 = R a R c R a + R b + R c R2 = {Ra Rc \over Ra + Rb + Rc} R2=Ra+Rb+RcRaRc
R 3 = R a R b R a + R b + R c R3 = {Ra Rb \over Ra + Rb + Rc} R3=Ra+Rb+RcRaRb
Ⅱ、Y——>▲(交乘总和除对面)
R a = R 1 R 2 + R 2 R 3 + R 1 R 3 R 1 Ra = {R1 R2 + R2 R3 + R1 R3 \over R1} Ra=R1R1R2+R2R3+R1R3
R b = R 1 R 2 + R 2 R 3 + R 1 R 3 R 2 Rb = {R1 R2 + R2 R3 + R1 R3 \over R2} Rb=R2R1R2+R2R3+R1R3
R c = R 1 R 2 + R 2 R 3 + R 1 R 3 R 3 Rc = {R1 R2 + R2 R3 + R1 R3 \over R3} Rc=R3R1R2+R2R3+R1R3
当三个电阻相等时,Ry = R▲ / 3,R▲ = Ry * 3
(2)实际电源的等效变换
改变结构、明确参数、指明方向
注意一:
并联的电压源等效转换时,只有极性相同的理想电压源才可以,作用是分流;串联的电流源等效转换时,只有极性相同的理想电流源才可以,作用是分压
注意二:
恒压电流源串联等效转换:同方向相加,异方向相减
恒流电流源并联等效转换:同方向相加,异方向相减
(3)受控电源的等效变换
与实际电源完全相同
但是,值得注意的是,在简化电路的时候,万万不可万万不可简化受控电源的控制支路!绝对不能动他!
(4)无源单口网络
无源单口网络外部特性一定可以用等效电阻去等效
若内部有受控电源可先化简(仿照实际电源变换),但控制支路一定不能动,再用外加电源法(简单来说就是有受控电源就用外加电源法)
分为有无受控源,无受控源就正常等效,有受控源就外加电源法
三、电路基本分析方法
都是以KCL、KVL为基础的方法,注意题目要求再做题!
1、支路电流法、支路电压法、2b法
(把这三放一起主要是这仨太鸡肋了)
思路就是设未知量,然后用KCL、KVL列方程求解
用的啥方法就设啥为未知量
一般考试用不到
2、网孔法
基本原理:KVL(要电压去电流) VAR
(1)思路:简化电路图 —— 顺时针画电流圈(这里一定要同方向【顺时针】,别给自己找麻烦) —— 列方程 —— 求解 —— 返回题目看看到底人家让你求什么呢!
(不要动控制支路!)
(2)列式子
+(自电阻 * 自电流)-(互电阻 * 外电流)=电压源电压升代数和
注意符号!
注意外电流考虑全面!
(3)特殊元件处理方法
①理想电流源
a.与理想电流源并联有电阻,那么直接化成电压源
b.理想电流源在外围回路中,其电流就是该网孔内电流
c.上述都不满足,直接设 u 在电流源上,但是要多找一个式子来表示u与电流的关系
②受控电压源
将其看成理想电压源即可
③受控电流源
将其看成理想电流源即可
注意:如果受控电源受控制支路上的元件的电流电压影响,那么图中标的正负号与实际电流方向没有半毛钱关系,只不过如果方向相反,在算的时候要给控制元素加个负号(做题体会吧)
3、节点法
基本原理:KCL(要电流去电压) VAR
(1)思路:简化电路图 —— 标参考电位 —— 标节点 —— 列方程 —— 求解 —— 返回题目看看到底人家让你求什么呢!
(不要动控制支路!)
(2)列式子
+(自电导 * 自电位) - (互电导 * 互电位) = 流入节点电流源电流之和(入+出-)
(3)特殊元件处理方法:
①理想电压源:
a.与理想电压源串联有电阻,那么直接化成电流源
b.理想电压源在外围回路中,一般设置参考节点在其附近
c.上述都不满足,直接设 i 在电压源上,写在式子右边
②受控电压源
将其看成理想电压源即可
③受控电压源
将其看成理想电流源即可
注意:当电流源串联有电阻的时候,在网孔法中电阻可以省略也可以不省略,在节点法中电阻必须省略
(4)弥尔曼定理
当电路中只有一个独立节点时,节点电位等于电流源电流之和(注意电流流入流出方向)除以各支路电导之和
即 ϕ = ∑ i ∑ G i \phi = {\sum i \over \sum Gi} ϕ=∑Gi∑i
(5)当出现两个电位用一根导线连在一起了怎么办?
不要忽视导线上的电流,将其算作等式右边的电流
四、电路基本定理
1、叠加定理
(1)只能在线性电路中使用
(2)叠加时应为代数和
(3)电压源看成短路;电流源看成开路
(4)受控源保留,控制关系不能改变
(5)不适用于计算功率
2、齐次定理
(1)在线性电路中,当全部 激励 同时增大k倍(k为常数)时,其响应也增大k倍
3、等效电源定理
(1)求等效电源内阻方法:(共三种方法)
①不除源:开路短路法
②除源:去电源后单口无源网络电阻等效法,其中包含了电路中出现受控源的处理方法(外加电源法)(其中包含了两种方法)
(2)等效电压源定理(戴维南等效电路)
①常用于求支路的各项元素 / 含源网络
②将线性含源网络等效成电压源和电阻的串联,先求电压(用叠加定理或齐次定理),后求等效内阻(方法见(1))
(3)等效电流源定理(诺顿电路)
①与戴维南等效电路完全相同,只不过电压源换成了电流源
有源线性单口网络的求解需要实践出真知,但原理相同,所以不要不敢列式子,注意与之前的知识点相结合,尤其是出现了特殊值,是不是要叠加定理和齐次定理与等效电源定理一起用
五、正弦稳态电路的分析
1、正弦量及其描述
(1)时域表示
u ( t ) = U m cos ( w t + ϕ u ) u(t) = U_m\cos(wt+\phi_u) u(t)=Umcos(wt+ϕu)
i ( t ) = I m cos ( w t + ϕ i ) i(t) = I_m\cos(wt+\phi_i) i(t)=Imcos(wt+ϕi)
①三要素:最大值、角频率(或频率、周期)、初相位
②相位差:
a.同频率才有比较性
b.相位差为九十度则正交;相位差为一百八十度则反相位
③正弦量的有效值:
有效值 = 最大值 2 有效值 = {最大值\over\sqrt2} 有效值=2最大值
(2)频域表示(相量表示)
① ϕ \phi ϕ为初相位
U ˙ = U ∠ ϕ ( U ˙ m = U m ∠ ϕ u ) \dot U=U∠\phi (\dot U_m=U_m∠\phi _u) U˙=U∠ϕ(U˙m=Um∠ϕu)
I ˙ = I ∠ ϕ ( I ˙ m = I m ∠ ϕ i ) \dot I=I∠\phi (\dot I_m=I_m∠\phi_i) I˙=I∠ϕ(I˙m=Im∠ϕi)
②计算:
加减用时域表示;
乘除用频域表示;(数值乘除,相位加减,原理请自学复数的五种表示形式)
2、KCL、KVL及电路元件伏安关系的相量形式
(1)原理和直流电相同,注意计算方法即可;
(2)电感
时域表示
电磁特性: u = L d i d t = 2 ω L I c o s ( ω t + ϕ i + 90 ° ) = 2 U c o s ( ω t + ϕ u ) u = L{di\over dt} = {\sqrt2}\omega LIcos(\omega t+\phi_i+90°) = {\sqrt2}Ucos(\omega t+\phi_u) u=Ldtdi=2ωLIcos(ωt+ϕi+90°)=2Ucos(ωt+ϕu)电感的电压超前于电流90°
感抗: X L = ω L = 2 π f L X_L = \omega L = 2\pi fL XL=ωL=2πfL
频域表示
电磁特性 U ˙ = j X L I ˙ \dot U = jX_L\dot I U˙=jXLI˙
复感抗: j X L jX_L jXL
(3)电容
时域表示
电磁特性: i = C d u d t = 2 ω C U c o s ( ω t + ϕ u + 90 ° ) = 2 I c o s ( ω t + ϕ i ) i = C{du\over dt} = {\sqrt2}\omega CUcos(\omega t+\phi_u+90°) = {\sqrt2}Icos(\omega t+\phi_i) i=Cdtdu=2ωCUcos(ωt+ϕu+90°)=2Icos(ωt+ϕi)电容电流超前于电压90°
容抗: X C = 1 ω C X_C = {1\over \omega C} XC=ωC1
频域表示
电磁特性: U ˙ = − j X C I ˙ \dot U = -jX_C\dot I U˙=−jXCI˙
复容抗: − j X C -jX_C −jXC
3、阻抗与容纳
(1)阻抗
复阻抗/阻抗: Z = R + j X Z = R + jX Z=R+jX(这也是阻抗角的来源)
阻抗模: ∣ Z ∣ = U I ∠ ( ϕ u − ϕ i ) |Z| = {U\over I}∠(\phi_u - \phi_i) ∣Z∣=IU∠(ϕu−ϕi)注意有效值之比
其中 X = X L − X C X = X_L - X_C X=XL−XC称为电抗,X大于0电感性,x小于0电容性
(2)导纳
复导纳/导纳: Y = 1 Z = G + j B Y = {1\over Z} = G + jB Y=Z1=G+jB
其中 B = B C − B L B = B_C - B_L B=BC−BL
(3)阻抗与导纳的等效变换
5、正弦稳态电路频域分析
(1)说明:
①选择正确的参考向量很重要:串联的选择电流,并联的选电压
②有效值不满足KVL、KCL
(2)无源电路的等效电路
①阻抗串并联直接正常算
②无源单口网络:若内部有受控电源可先化简(仿照实际电源变换),但控制支路一定不能动,再用外加电源法(简单来说就是有受控电源就用外加电源法)
(3)电压源与电流源的等效变换
与直流电中的电源转换规律相同
(4)网孔法与节点法
与直流电中的网孔法与节点法相同
(5)等效电源定理
与直流电中的等效电源转换定理相同
6、正弦稳态电路的功率
(1)瞬时功率
p ( t ) = u ( t ) i ( t ) = U I c o s ( ϕ u − ϕ i ) + U I c o s ( 2 ω t + ϕ u + ϕ i ) p(t) = u(t)i(t) = UIcos(\phi_u - \phi_i) + UIcos(2\omega t + \phi_u + \phi_i) p(t)=u(t)i(t)=UIcos(ϕu−ϕi)+UIcos(2ωt+ϕu+ϕi)
前者是消耗的功率,后者是吞吐功率的变化规律;
若元件为电阻,则后者时刻为0,可知电阻消耗能量;
若元件为电容或电感,则前者为0,可知电容或电感在一个周期内不消耗电能;
(2)平均功率/有功功率
P = U I c o s ( ϕ u − ϕ i ) = U I c o s ϕ P = UIcos(\phi_u - \phi_i) = UIcos\phi P=UIcos(ϕu−ϕi)=UIcosϕ
c
o
s
ϕ
cos\phi
cosϕ是功率因数,
ϕ
\phi
ϕ是功率因素角,对于无源单口网络,功率因数角与其等效的复阻抗阻抗角相等
注意:慎用
P
=
U
2
R
P = {U^2 \over R}
P=RU2,因为,
U
2
U^2
U2有可能是包含着电容电感的
(3)无功功率
表示电路中储能元件与电源进行能量交换的最大速率,即“吞吐”功率的最大值
Q = U I s i n ( ϕ u − ϕ i ) = U I s i n ϕ = Q L + Q C Q = UIsin(\phi_u - \phi_i) = UIsin\phi = Q_L + Q_C Q=UIsin(ϕu−ϕi)=UIsinϕ=QL+QC
(4)视在功率
S = U I S = UI S=UI
S2 = P2 + Q2
t a n ϕ = Q P tan\phi = {Q\over P} tanϕ=PQ功率三角形
(5)最大传输功率定理
①负载为阻抗Z——阻抗匹配
条件: R = R 0 ; X = − X 0 R = R_0;X = -X_0 R=R0;X=−X0
②负载为电阻R——等模匹配
条件: R = ∣ Z ∣ R = |Z| R=∣Z∣
六、谐振电路
让谁谐振就让谁的阻抗为0即可
1、串联谐振电路(电压谐振)
(1)原理:令虚部为0
(2)条件:
X = ω L − 1 ω C = 0 X = \omega L - {1\over \omega C} = 0 X=ωL−ωC1=0
(3)固有频率
ω = 1 L C \omega = {1\over \sqrt {LC}} ω=LC1
(4)谐振阻抗:最小
Z = R Z = R Z=R
(5)特征阻抗
ρ = X L 0 = X C 0 = L C \rho = X_{L0} = X_{C0} = \sqrt{L\over C} ρ=XL0=XC0=CL
(6)品质因数
Q = ρ R Q = {\rho \over R} Q=Rρ
2、并联谐振电路(电流谐振)
(1)原理:令虚部为0
(2)条件:
X = ω L − 1 ω C = 0 X = \omega L - {1\over \omega C} = 0 X=ωL−ωC1=0
(3)固有频率
ω = 1 L C \omega = {1\over \sqrt {LC}} ω=LC1
(4)谐振阻抗:最大
Z = ρ 2 R = Q ρ = Q 2 R Z = {\rho^2 \over R} = Q\rho = Q^2R Z=Rρ2=Qρ=Q2R
(5)特征阻抗
ρ = X L 0 = X C 0 = L C \rho = X_{L0} = X_{C0} = \sqrt{L\over C} ρ=XL0=XC0=CL
(6)品质因数
Q = ρ R Q = {\rho \over R} Q=Rρ
七、非正弦周期电流电路
1、非正弦周期电量的有效值
有两种方法:定义法、傅里叶展开法
(1)定义法
I = 1 T ∫ − T 2 T 2 [ i ( t ) 2 ] d t I = \sqrt{{1\over T}\int_{-{T\over 2}}^{T\over 2}[i(t)^2]dt} I=T1∫−2T2T[i(t)2]dt
方均根值
(2)傅里叶展开法
I = I 0 2 + I 1 2 + I 2 2 + . . . + I n 2 I = \sqrt{I_0^2 + I_1^2 + I_2^2 + ... + I_n^2} I=I02+I12+I22+...+In2
各个分量的有效值的平方和再开方
2、非正弦周期电流电路稳态分析
步骤入下:
(1)将给定的激励源展开成傅里叶级数;
(2)求各激励单独作用时的各响应:直流分量、基波分量、二次谐波分量…(注意过程中是用时域表达还是频域表达)
(3)时域叠加:因为频率不相同所以一定是时域叠加
3、非正弦周期电流电路的平均功率
非正弦周期电流电路功率,满足叠加定理,因为频率不同
但是其他的电路不可以!!!
P = U 0 I 0 + U 1 I 1 c o s ( ϕ u 1 − ϕ i 1 ) + U 2 I 2 c o s ( ϕ u 2 − ϕ i 2 ) + . . . + U n I n c o s ( ϕ u n − ϕ i n ) P = U_0I_0 + U_1I_1cos(\phi_{u1} - \phi_{i1}) + U_2I_2cos(\phi_{u2} - \phi_{i2}) + ... + U_nI_ncos(\phi_{un} - \phi_{in}) P=U0I0+U1I1cos(ϕu1−ϕi1)+U2I2cos(ϕu2−ϕi2)+...+UnIncos(ϕun−ϕin)
注意此式中的电压和电流都是有效值,不是最大值
八、一阶电路时域分析
1、电路分析中的基本信号
(1)直流信号
f ( t ) = A f(t) = A f(t)=A
− ∞ < t < ∞ -\infty \lt t \lt \infty −∞<t<∞
(2)正弦信号
f ( t ) = A m c o s ( ω t + ϕ ) f(t) = A_mcos(\omega t + \phi) f(t)=Amcos(ωt+ϕ)
− ∞ < t < ∞ -\infty \lt t \lt \infty −∞<t<∞
(3)单边实指数信号
f ( t ) = { A e a t ( t > 0 ) 0 ( t < 0 ) f(t) = \{^{0(t \lt0)}_{Ae^{at}(t\gt0)} f(t)={Aeat(t>0)0(t<0)
(4)振幅按指数规律衰减的正弦信号
f ( t ) = { A e − a t s i n ω t ( t ≥ 0 ) 0 ( t < 0 ) f(t) = \{^{0(t \lt0)}_{Ae^{-at}sin\omega t(t\ge0)} f(t)={Ae−atsinωt(t≥0)0(t<0)
(5)单位阶跃信号
U ( t ) = { 0 ( t < 0 ) 1 ( t > 0 ) U(t) = \{^{1(t\gt 0)}_{0(t\lt 0)} U(t)={0(t<0)1(t>0)
1 实质上是单位 1 ,且该信号通常表示为 ϵ ( t ) 或 1 ( t ) 1实质上是单位1,且该信号通常表示为\epsilon (t)或1(t) 1实质上是单位1,且该信号通常表示为ϵ(t)或1(t)
其具有切除性 其具有切除性 其具有切除性
(6)单位门信号
G γ ( t ) = { 0 ( ∣ t ∣ > γ 2 ) 1 ( ∣ t ∣ < γ 2 ) G_\gamma (t) = \{^{1(|t|\lt{\gamma \over 2})}_{0(|t|\gt{\gamma \over 2})} Gγ(t)={0(∣t∣>2γ)1(∣t∣<2γ)
A G g a m m a ( t − t 0 ) 的门心为 t 0 , 门高为 A AG_gamma (t - t_0)的门心为t_0,门高为A AGgamma(t−t0)的门心为t0,门高为A
(7)单位冲激信号
δ ( t ) = { 0 ( t ≠ 0 ) ∞ ( t = 0 ) \delta(t) = \{^{\infty(t = 0)}_{0(t≠0)} δ(t)={0(t=0)∞(t=0)
∫ − ∞ ∞ δ ( t ) d t = 1 \int^\infty_{-\infty}\delta(t)dt = 1 ∫−∞∞δ(t)dt=1
1为图形面积,成为冲激强度
单位冲激信号与单位门信号是互为微分与积分的关系
单位冲激吸纳后具有可乘性、抽样性、偶信号性
2、换路定律
(1)换路定律
若流过电容器的电流是有限值,那么电容器两端的电压在换路瞬间是连续的,不会发生突变
若电感电压为有限值,电感中的磁链和电流在换路瞬间是连续的,不会发生跃变
一定要注意是有限值
说白了就是算电容电压、电感电流初始值的时候可以用 0 − 0^- 0−时刻的来求
3、电路初始值的求解
(1)电容电压和电感电流的初始值
用换路定律
(2)电路中其他电压和电流的初始值
t = 0 + t=0^+ t=0+等效电路法
先将电容用 U = u c ( 0 + ) U=u_c(0^+) U=uc(0+)的电压源代替,电感用 I = i c ( 0 + ) I=i_c(0^+) I=ic(0+)的电流源代替
然后使用霍尔基夫定律和欧姆定律计算
4、一阶电路的全响应
(1)基本公式
全响应=零输入响应( t = ∞ t=\infty t=∞时刻为0)+零状态响应(初始时刻为0)
(2)三要素分析法
x ( t ) = x ( ∞ ) − [ x ( ∞ ) − x ( 0 + ) ] e − t τ x(t)=x(\infty)-[x(\infty)-x(0^+)]e^{-{t\over \tau}} x(t)=x(∞)−[x(∞)−x(0+)]e−τt
其中
x ( 0 + ) x(0^+) x(0+)用 t = 0 + t=0^+ t=0+等效电路法求
x ( ∞ ) x(\infty) x(∞)稳态值用 t > 0 t>0 t>0稳态电路求解,电容看成开路,电感看成通路(线性电路)
R: t > 0 t>0 t>0时从动态元件两端看进去的戴维南等效电路来求
τ = R C / L R \tau = RC/{L\over R} τ=RC/RL
(3)整体思路
求初始值
求稳态值
求 τ \tau τ