一、命题逻辑
1、联结词
(1)→ 蕴含:
前件 → 后件;if 前件, 后件; 后件, only 前件;
实例:“除非 后件,否则 前件”
(2)合取 比较级大于 析取
(3)当且仅当:↔
2、命题公式的基本等价关系
3、定理
(1)带入定理:G(G1,G2,G3,…,Gn) = G’(P1,P2,P3,…,Pn)
(2)替换定理:G1是G的子公式,H1是任意的命题公式,H1替换G1则得到新公.式H,即
若G1 = H1,则G = H
4、范式
(1)析取范式和合取范式
命题变元或命题变元的否定为文字;
有限个文字的析取成为析取式(子句);
有限个文字的合取为合取式(短语);
有限个合取式的析取为析取式;
有限个析取式的合取为合取式;
实例:P是以上后四个;
p∧q是合取式;
(p∧q)是析取式;
(2)主析取范式和主合取范式
①n个命题变元有2^n个极小项(合取式,对应主析取式)和极大项(析取式,对应主合取式)
②极小项真值表特点:仅一组为真,则使其为真的仅有一组
极大项真值表特点:仅一组为假,则使其为假的仅有一组
(这里不理解的话直接看⑤加粗文字)
③编码:极小项:m11(m3) ——> p∧q = 1 (意思是pq同时为真时才为真值指派)
极大项(反着来):M11(M3) ——>
¬
\lnot
¬p∨
¬
\lnot
¬q = 0(意思是pq同时为假才为真值指派)
!!!写m几的时候注意命题变元的顺序问题!!!
④任意两个不用的极小项的合取为0(因为只有一组为1),任意两个不用的极大项析取为1(因为只有一组为假);极大项的否定为极小项,反之也成立
⑤所有极小项的析取为永真公式,所有极大项的合取公式为永假公式。所以主析取式的极小项是使得范式为真的一组解,主合取式的极大项是使得范式为假的一组解
这里附表更好理解:
P | Q | ¬ P ∧ ¬ Q \lnot P \land \lnot Q ¬P∧¬Q | ¬ P ∧ Q \lnot P \land Q ¬P∧Q | P ∧ ¬ Q P \land \lnot Q P∧¬Q | P ∧ Q P \land Q P∧Q |
---|---|---|---|---|---|
0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 1 |
由上表可见,每一行值为1的极小项只有一个,因此当所有的极小项析取时,结果一定为真,因此主析取范式中的每个极小项就是使原式结果为真的所有P、Q的真值情况;
P | Q | ¬ P ∨ ¬ Q \lnot P \lor \lnot Q ¬P∨¬Q | ¬ P ∨ Q \lnot P \lor Q ¬P∨Q | P ∨ ¬ Q P \lor \lnot Q P∨¬Q | P ∨ Q P \lor Q P∨Q |
---|---|---|---|---|---|
0 | 0 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 |
由上表可知,每一行值为0的极大项只有一个,因此当所有的极大项合取时,结果一定为假,因此主合取范式中的每个极大项就是使原式结果为假的所有P、Q的真值;
⑥求主析取范式和主合取范式:(用真值表法真的很简单!!!)
当求主析取范式的时候,合取一个没有的元素的他和他自己的析取;
当求主合取范式的时候,析取一个没有的元素的他和他自己的合取;
⑦主析取范式和主合取范式的转换:
使用编码的表达方式,下角标完全了即可(快捷方法)
二、谓词逻辑
1、谓词和量词的定义
(1)表示具体或特定的个体词称为个体常量
(2)表示抽象或泛指的个体次称为个体变量
(3)个体词的取值范围是个体域(论域);宇宙间所有个体域聚集在一起构成的个体域为全总个体域
(4)含有n个个体就是n元命题函数或n元命题谓词
(5)全称量词:倒A;存在量词:倒E;(任意x)F(x)中的F(x)称为辖域(其实可以理解成c语言中的函数)
2、逻辑谓词符号化的两条规则
(1)对于全称量词,刻画其对应的个体域的特性谓词作为蕴含式的前件加入
(2)对于存在量词,刻画其对应的个体域的特性谓词作为合取式的合取项加入
如:
∀ x = ( U ( x ) → P ( x ) ) \forall x = (U(x) \to P(x)) ∀x=(U(x)→P(x))
∃ x = ( U ( x ) ∧ P ( x ) ) \exists x = (U(x) \land P(x)) ∃x=(U(x)∧P(x))
(3)例题:
每个实数都存在比它大的另外的实数
∀ x ( R ( x ) → ( ∃ y ) ( R ( y ) ∧ L ( x , y ) ) ) \forall x(R(x) \to (\exists y)(R(y) \land L(x , y))) ∀x(R(x)→(∃y)(R(y)∧L(x,y)))
(4)谓词翻译难点:
如果有多个量词,读的顺序按从左到右,因此注意先后顺序,这会导致翻译的理解不同
如:
( ∀ x ) ( I ( x ) → ( ∃ y ) ( I ( y ) ∧ Q ( x , y ) ) ) (\forall x)(I(x) \to (\exists y)(I(y)\land Q(x , y))) (∀x)(I(x)→(∃y)(I(y)∧Q(x,y)))
( ∃ x ) ( ∀ y ) ( I ( x ) ∧ ( I ( y ) → Q ( x , y ) ) ) (\exists x)( \forall y)(I(x) \land (I(y) \to Q(x , y))) (∃x)(∀y)(I(x)∧(I(y)→Q(x,y)))
注意量词先后顺序
3、谓词合式公式与解释
(1)P(x1,x2,x3,…,xn)为原子公式
(2)满足下列条件为合式公式:
①原子公式是合式公式
②合式公式间加逻辑词依然是合适公式,如G∧H
③若G是合式公式,x是个体变量,则(任意)xG也是合适公式
④有限次使用以上三点的表达式是合式公式
4、自由变元和约束变元
(1)(任意x)G(x,y)中x是约束变元,y是自由变元
重要的是确定量词的辖域,重点看大括号括哪了
(2)约束变元的改名规则和自由变元的代入规则
就正常别重名就行了
(3)闭式
合式公式里没有自由变元…
(4)有效公式——>永真
矛盾公式——>永假(啰里啰唆的定义)
5、谓词合式公式的基本等价关系
G<–>H为真,那么G=H
6、范式
(1)前束范式
一切量词都在公式的最前端(不含否定词)且这些量词的辖域都延申到公式的末端
注意:
前束范式的量词的顺序,一般是辖域越大位置越靠前,辖域并列的无顺序
(2)求前束范式的方法:
a.先消去联结词 “
→
\to
→” 和 “
↦
\mapsto
↦” ;
b.反复使用德摩根律和双重否定律,将“
¬
\lnot
¬”移到原子为此公式的前端(说白了就是别在量词那里方放着)
c.将所有量词放在最前端
三、推理理论
1、命题逻辑的推理理论
(1)推理的有效性
首先先要明白什么是推理的有效性,这样才有便于我们后续更好地理解推理定论和演绎法。有效性不在乎前提与结论的正确性(比如正确的前提一定可以推出正确的结论,或者错误的结论一定是由错误的前提推出的),而在乎的是结论必须是前提合乎逻辑的结果,也就是说某个前提是可以推出这个结论的,我们不管前提或者结论的正确与否
(2)推理的基本概念和推理形式
设一组前提
Γ
\Gamma
Γ={G1,G2,G3,…,Gn},H为一组前提的逻辑结果,那么
Γ ⟹ H \Gamma \implies H Γ⟹H
如果上式成立,那么当且仅当
G 1 , G 2 , G 3 , . . . , G n → H 为永真公式 G1,G2,G3,...,Gn \to H为永真公式 G1,G2,G3,...,Gn→H为永真公式(这个其实是定义法证明结论是前提的逻辑结果)
注意, ⟹ \implies ⟹不是逻辑联结词,与蕴含符号完全不同, ⟹ \implies ⟹描述两个公式间的逻辑蕴含关系,而蕴含符号的结果是一个公式
(3)判断有效结论的方法
Ⅰ、真值表
①如果G是1,且H也是1,那么H是G的逻辑结果
②如果H是0,且G中至少存在一个前提是0,那么H是G的逻辑结果
③简便方法(计算法)(不可使用在考试证明题中):令结论为1,然后求所有前提的真值,如哦所有前提均为1,则成立
如:
判断 H 是否是 G 1 和 G 2 的前提: H : ¬ P ; G 1 : P → Q ; G 2 : ¬ Q 判断H是否是G1和G2的前提:H:\lnot P;G1:P\to Q;G2:\lnot Q 判断H是否是G1和G2的前提:H:¬P;G1:P→Q;G2:¬Q
令 H 为 1 ,那么 ¬ Q 必为 1 ,则 Q 为 0 ,因为 P → Q 也要为 1 ,那么 P 为 1 ,至此解出来了 P 和 Q 的真值(不管 P 和 Q 是多少),那么这个推理有效 令H为1,那么\lnot Q必为1,则Q为0,因为P\to Q也要为1,那么P为1,至此解出来了P和Q的真值(不管P和Q是多少),那么这个推理有效 令H为1,那么¬Q必为1,则Q为0,因为P→Q也要为1,那么P为1,至此解出来了P和Q的真值(不管P和Q是多少),那么这个推理有效
Ⅱ、推理定律
Ⅲ、演绎法
(1)规则P:前提引用规则
用了前提就写上P
(2)规则T:逻辑规则引用规则
实际上既不是P也不是CP的时候就写T就行了
(3)规则CP:附加前提规则
遇到结论中包含蕴含公式的时候,可以将前件直接和前提合取,然后后件成为结论,这种操作就叫CP
(4)书写范例
E:等价
I:推理
Ⅳ、间接证明法——反证法
说白了就是逆否式,例如,欲证明
P
⟹
Q
P \implies Q
P⟹Q,那么证明
¬
Q
⟹
¬
P
\lnot Q \implies \lnot P
¬Q⟹¬P即可,可以假设Q为假(即
¬
Q
\lnot Q
¬Q为真),然后证明P为假(即
¬
P
\lnot P
¬P为真)
本质:将结论的否定作为一个附加前提插入到前提集合中去,证明这组新前提集合中各个前提的合取 = R ∧ ¬ R R \land \lnot R R∧¬R即可(前提的合取是个矛盾式)。解释一下就是,旧前提如果是真,那么合取的 ¬ R \lnot R ¬R就是假,那么R就是真,证明成立
2、谓词逻辑的推理理论
(1)推理规律
最后六个规律总结为: ∀ ∀ → ∃ ∀ → ∀ ∃ → ∃ ∃ \forall\forall\rightarrow\exists\forall\rightarrow\forall\exists\rightarrow\exists\exists ∀∀→∃∀→∀∃→∃∃
(2)推理规则
Ⅰ、US——全称特指规则
( ∀ x ) G ( x ) ⟹ G ( y ) (\forall x)G(x) \implies G(y) (∀x)G(x)⟹G(y)
( ∀ x ) G ( x ) ⟹ G ( c ) (\forall x)G(x) \implies G(c) (∀x)G(x)⟹G(c)
(y是自由变元;c是任意个体常量)
Ⅱ、ES——存在特指规则
( ∃ x ) G ( x ) ⟹ G ( c ) (\exists x)G(x) \implies G(c) (∃x)G(x)⟹G(c)
Ⅲ、UG——全称推广规则
G ( y ) ⟹ ( ∀ x ) G ( x ) G(y) \implies (\forall x)G(x) G(y)⟹(∀x)G(x)
Ⅳ、EG——存在推广规则
G ( c ) ⟹ ( ∀ x ) G ( x ) G(c) \implies (\forall x)G(x) G(c)⟹(∀x)G(x)
注意:在变换前要注意有没有自由变元,如果有的话,视情况选择改名还是写函数
(3)难点
①在US、ES均要使用的时候要先使用ES后使用US,如果先使用US确定了特指变元c,那么在使用ES特指的时候凭什么说特特指的一定是c呢,毕竟ES受的限制大,反而ES先确定了特指变元,在确定US的特指变元的时候想是什么是什么
②在添加量词的时候,只能使用ES不能使用US,不然就扩范围过度了
(4)做题小技巧
①当题目为谓词逻辑推理时,又恰好个体域唯一且不断出现,我们可以提前规定个体域,如
个体域为xxx构成的集合
…推理证明过程
这样做免去了个体域的函数还要参与合取,如
设H(x):x是人;P(x):x喜欢坐汽车;Q(x):x喜欢骑自行车;R(x):x喜欢步行
个体域为人构成的集合
( ∀ x ) ( H ( x ) ∧ R ( x ) → ¬ P ( x ) ) (\forall x)(H(x) \land R(x) \to \lnot P(x)) (∀x)(H(x)∧R(x)→¬P(x))
简化成
( ∀ x ) ( R ( x ) → ¬ P ( x ) ) (\forall x)(R(x) \to \lnot P(x)) (∀x)(R(x)→¬P(x))
…推理证明过程
②谓词逻辑推理的基本思路是,先把存在量词特指掉,再把全称量词特指掉,然后去除蕴含、双条件等符号,然后按照命题逻辑推理正常写,最后如果需要推广回去就推广回去
3、证明定理的方法
(1)直接证明
通过证明p为真则q也必然为真,那么
p
→
q
p \to q
p→q必然成立
(2)间接证明
p
→
q
p \to q
p→q等价于
¬
q
→
¬
p
\lnot q \to \lnot p
¬q→¬p,那么只需要证明逆否命题成立即可
(3)空证明
对于
p
→
q
p \to q
p→q,若可以证明p为假,则证明完毕
适用题型:对所有正整数来说,一个蕴含式为真
(4)平凡证明
对于
p
→
q
p \to q
p→q,若可以证明q为真,则证明完毕
适用题型:证明定理的特殊情形;数学归纳法
(5)定义
实数r是有理数,则存在整数p和q(q≠0)使得
r
=
p
q
r = {p \over q}
r=qp
(6)归谬证明
(直接证明和间接证明均不适用时,才用归谬证明)
定义:假定可以找到矛盾式q使得
¬
p
→
q
\lnot p \to q
¬p→q为真,即
¬
p
→
F
a
u
l
s
e
\lnot p \to Faulse
¬p→Faulse为真。于是命题
¬
p
\lnot p
¬p为假。所以p必然为真。当可以找到矛盾式(比如
r
∧
¬
r
r \land \lnot r
r∧¬r)使得有可能证明蕴含式
¬
p
→
(
r
∧
¬
r
)
\lnot p \to (r \land \lnot r)
¬p→(r∧¬r)为真时 ,就可以使用这种技术
例如
4、数学归纳法
(1)原理:
假设①验证n = n0,有P(n0)为真;
②奥基社对于n=k(k≥n0),有P(k)为真;
③证明n=k+1,有P(k+1)为真
谓词逻辑表示:
(
∃
n
0
)
P
(
n
0
)
∧
(
∀
)
(
(
n
=
k
)
∧
P
(
k
)
→
P
(
k
+
1
)
)
=
1
(\exists n0)P(n0) \land (\forall)((n = k) \land P(k) \to P(k + 1)) = 1
(∃n0)P(n0)∧(∀)((n=k)∧P(k)→P(k+1))=1
四、集合论
1、集合与集合的关系
(1) A = B ⟺ A ⊆ B 且 B ⊆ A A = B \iff A \subseteq B 且 B \subseteq A A=B⟺A⊆B且B⊆A 非常重要!
2、特殊集合
(1)基数(阶):集合内元素的个数
(2)A的子集有m个元素就叫m元子集
(3)集族:把集合作为元素的集合
(4)P(A) = 2 A {2^A} 2A:A的幂集:A的所有子集构成的集合(别忘了空集)
3、集合的运算
4、无限集
(1)可数集合
①与自然数集N等势(两个集合之间存在一一对应的关系),基数(势)记为 ℵ 0 \aleph_0 ℵ0(说白了就是离散的)
②两个有限集合等势当且仅当让门有相同的元素个数
③有限集合不和其任何真子集等势(毕竟个数不相同)
④可数集合可以与其可数的真子集等势
(2)不可数集合
①与可数集合相反
五、二元关系
1、二元关系
(1)序偶和笛卡尔积
①有序偶对<x,y>
②n重有序组<x,y,z,…>
③笛卡尔积:其本质是一个元素是序偶的集合
A × B = { < x , y > ∣ x ∈ A ∧ y ∈ B } A\times B=\{<x,y>|x\in A \land y\in B\} A×B={<x,y>∣x∈A∧y∈B}
其中A、B为两个集合那么A × \times ×B为两个集合的笛卡尔积
注:1、任何集合与空集的笛卡尔积都为空集
2、笛卡尔积不满足交换律、结合律,因为序偶本身是有序的
④ A × B ⊆ C × D ⟺ A ⊆ C , B ⊆ D A\times B\subseteq C\times D \iff A\subseteq C,B\subseteq D A×B⊆C×D⟺A⊆C,B⊆D
⑤ ∣ A × B × C × . . . ∣ = ∣ A ∣ × ∣ B ∣ × ∣ C ∣ × . . . |A\times B\times C\times ...| = |A|\times |B|\times |C|\times... ∣A×B×C×...∣=∣A∣×∣B∣×∣C∣×...
(2)关系
设R是从A到B的关系
①空关系: R = ∅ R=\varnothing R=∅
②恒等关系: R = { < x , x > ∣ x ∈ A } R=\{<x,x>|x\in A\} R={<x,x>∣x∈A}
③全关系: R = A × B R=A\times B R=A×B
(3)表示法
集合表示法、关系图表示法、关系矩阵表示法(A、B分别为行列,序偶关系置为1否则0)
(4)注意
①关系是一种特殊的集合,牢记其元素是以序偶的形式出现的,注意与一般集合的区别。如,在一个普通集合A中任取一个元素表示为“ ∀ x ∈ A \forall x\in A ∀x∈A”,在一个关系R中任取一个元素表示为“ ∀ < x , y > ∈ R \forall <x,y> \in R ∀<x,y>∈R”(易错点!!!!)
②注意关系图中,A到B的关系R与A上的关系又区别
2、关系的运算
(1)关系的复合运算
定义: R ∘ S = { < x , z > ∣ x ∈ A ∧ z ∈ C ∧ ( ∃ y ) ( y ∈ B ∧ x R y ∧ y S z ) } R\circ S = \{<x,z>|x\in A\land z\in C\land (\exists y)(y\in B\land xRy\land ySz)\} R∘S={<x,z>∣x∈A∧z∈C∧(∃y)(y∈B∧xRy∧ySz)}
说白了就是有中间变量搭桥
总结为一句话就是,前关系的后域是后关系的前域
注意:
①若不存在这样的B关系,那么
R
∘
S
R\circ S
R∘S是
∅
\varnothing
∅
②
∅
∘
R
=
R
∘
∅
=
∅
\varnothing \circ R = R\circ \varnothing = \varnothing
∅∘R=R∘∅=∅
( R ∘ S ) ∘ T = R ∘ ( S ∘ T ) (R\circ S)\circ T = R\circ (S\circ T) (R∘S)∘T=R∘(S∘T)满足结合律
当 R ⊆ A × B 时, I A ∘ R = R ∘ I B ,其中 I A 和 I B 是 A 和 B 上的恒等关系 当R\subseteq A\times B时,I_A\circ R = R\circ I_B,其中I_A和I_B是A和B上的恒等关系 当R⊆A×B时,IA∘R=R∘IB,其中IA和IB是A和B上的恒等关系
正是因为他是恒等关系,才使得搭桥搭完还是自己,但是要注意顺序,因为复合运算不满足交换律
R ∘ ( S 1 ∪ S 2 ) = ( R ∘ S 1 ) ∪ ( R ∘ S 2 ) R\circ (S_1\cup S_2) = (R\circ S_1) \cup (R\circ S_2) R∘(S1∪S2)=(R∘S1)∪(R∘S2)
R ∘ ( S 1 ∩ S 2 ) ⊆ ( R ∘ S 1 ) ∩ ( R ∘ S 2 ) R\circ (S_1\cap S_2) \subseteq (R\circ S_1) \cap (R\circ S_2) R∘(S1∩S2)⊆(R∘S1)∩(R∘S2)
(3)关系的逆运算
定义: R − 1 = { < a , b > ∣ < a , b > ∈ R } R^{-1} = \{<a,b>|<a,b>\in R\} R−1={<a,b>∣<a,b>∈R}
∅ − 1 = ∅ \varnothing^{-1} = \varnothing ∅−1=∅
( R ∘ S ) − 1 = S − 1 ∘ R − 1 (R\circ S)^{-1} = S^{-1}\circ R^{-1} (R∘S)−1=S−1∘R−1
( R ∪ S ) − 1 = R − 1 ∪ S − 1 (R\cup S)^{-1} = R^{-1}\cup S^{-1} (R∪S)−1=R−1∪S−1
( R ∩ S ) − 1 = R − 1 ∩ S − 1 (R\cap S)^{-1} = R^{-1}\cap S^{-1} (R∩S)−1=R−1∩S−1
( R − S ) − 1 = R − 1 − S − 1 (R - S)^{-1} = R^{-1} - S^{-1} (R−S)−1=R−1−S−1
( R ‾ ) − 1 = R − 1 ‾ (\overline R)^{-1} = \overline {R^{-1}} (R)−1=R−1
( A × B ) − 1 = B × A (A\times B)^{-1} = B \times A (A×B)−1=B×A
S ⊆ R ⟺ S − 1 ⊆ R − 1 S\subseteq R \iff S^{-1} \subseteq R^{-1} S⊆R⟺S−1⊆R−1
(4)关系的幂运算
设R是非空集合A上的关系
定义: R 0 = I A R^0 = I_A R0=IA
R 1 = R R^1 = R R1=R
R n = R n ∘ R = R ∘ R n R^n = R^n \circ R = R \circ R^n Rn=Rn∘R=R∘Rn
R n ∘ R m = R m ∘ R n = R m + n , ( R m ) n = R m n R^n\circ R^m = R^m\circ R^n = R^{m+n}, (R^m)^n = R^{mn} Rn∘Rm=Rm∘Rn=Rm+n,(Rm)n=Rmn
∣ A ∣ = n 则, |A| = n则, ∣A∣=n则,
⋃ i = 1 ∞ R i = ⋃ i = 1 n R i = R 1 ∪ R 2 ∪ . . . ∪ R n \bigcup_{i=1}^{\infty} R^i = \bigcup_{i=1}^{n} R^i = R^1 \cup R^2 \cup...\cup R^n i=1⋃∞Ri=i=1⋃nRi=R1∪R2∪...∪Rn
注意: A n A^n An与 R n R^n Rn的区别,前者是n和A的笛卡尔积,后者是A的n个关系R的n-1次复合运算
(5)关系运算的应用
①插入操作是 ∪ \cup ∪
②删除运算是 − - −
3、关系的性质
(1)自反性与反自反性
定义:①如果对 ∀ x ∈ A \forall x\in A ∀x∈A,都有 < x , x > ∈ R <x,x>\in R <x,x>∈R,那么称R在A上是自反的,R具有自反性;
②如果对 ∀ x ∈ A \forall x\in A ∀x∈A,都有 < x , x > ∉ R <x,x>\notin R <x,x>∈/R,那么称R在A上是反自反的,R具有反自反性
在矩阵上表示就是对角线都为1,其余任意
(2)对称性与反对称性
定义:对 ∀ x , y ∈ A \forall x,y\in A ∀x,y∈A,如果 < x , y > ∈ R <x,y>\in R <x,y>∈R,那么 < y , x > ∈ R <y,x>\in R <y,x>∈R,则称关系R是对称的,R具有对称性;
对 ∀ x , y ∈ A \forall x,y\in A ∀x,y∈A,如果 < x , y > ∈ R <x,y>\in R <x,y>∈R,且 < y , x > ∈ R <y,x>\in R <y,x>∈R,那么x=y(或如果 < x , y > ∈ R <x,y>\in R <x,y>∈R,且 x ≠ y x≠y x=y,那么 < y , x > ∈ R <y,x>\in R <y,x>∈R)则称关系R是反对称的,R具有反对称性
空关系满足以上两者
注意是如果不是任意,这是自反性与对称性的区别
在矩阵上表示就是1、0关于对角线对称,对角线任意
(3)传递性
设R是非空集合A上的关系
定义:对 ∀ x , y ∈ A \forall x,y\in A ∀x,y∈A,如果 < x , y > ∈ R <x,y>\in R <x,y>∈R,且 < y , z > ∈ R <y,z>\in R <y,z>∈R,那么 < x , z > ∈ R <x,z>\in R <x,z>∈R,则称R是传递的,R具有传递性
(4)关系性质的证明
①形式化证明
②关系性质的判定定理
R 是自反的 ⟺ I A ⊆ R R是自反的\iff I_A\subseteq R R是自反的⟺IA⊆R
R 是反自反的 ⟺ R ∩ I A = ∅ R是反自反的\iff R\cap I_A = \varnothing R是反自反的⟺R∩IA=∅
R 是对称的 ⟺ R = R − 1 R是对称的\iff R = R^{-1} R是对称的⟺R=R−1
R 是反对称的 ⟺ R ∩ R − 1 ⊆ I A R是反对称的\iff R \cap R^{-1} \subseteq I_A R是反对称的⟺R∩R−1⊆IA
R 是传递的 ⟺ R ∘ R ⊆ R R是传递的\iff R \circ R \subseteq R R是传递的⟺R∘R⊆R
全关系:自反性,对称性,传递性
空关系:反自反性,对称性,反对称性,传递性
恒等关系:自反性,对称性,反对称性,传递性
真包含关系:反自反性,反对称性,传递性
(5)关系性质的保守性
若R,S是自反的,则 R − 1 , R ∪ S , R ∩ S , R ∘ S R^{-1},R\cup S,R\cap S,R\circ S R−1,R∪S,R∩S,R∘S也是自反的
若R,S是反自反的,则 R − 1 , R ∪ S , R ∩ S , R − S R^{-1},R\cup S,R\cap S,R-S R−1,R∪S,R∩S,R−S也是反自反的
若R,S是对称的,则 R − 1 , R ∪ S , R ∩ S , R − S R^{-1},R\cup S,R\cap S,R-S R−1,R∪S,R∩S,R−S也是对称的
若R,S是反对称的,则 R − 1 , R ∩ S , R − S R^{-1},R\cap S,R-S R−1,R∩S,R−S也是反对称的
若R,S是传递的,则 R − 1 , R ∩ S R^{-1},R\cap S R−1,R∩S也是传递的
4、关系的闭包运算
(1)定义
R是非空集合A上的关系,添给R加最少的元素使得R自反的r(或对称的s或传递的t)
(2)计算方法
r ( R ) = R ∪ I A r(R) = R \cup I_A r(R)=R∪IA
s ( R ) = R ∪ R − 1 s(R) = R\cup R^{-1} s(R)=R∪R−1
t ( R ) = ⋃ i = 1 ∞ R i ,若 ∣ A ∣ = n ,则 t ( R ) = ⋃ i = 1 n R i (说白了就是把前 n 个幂运算的结果都并一遍) t(R) = \bigcup_{i = 1}^{\infty}R^i,若|A| = n,则t(R) = \bigcup_{i = 1}^{n}R^i(说白了就是把前n个幂运算的结果都并一遍) t(R)=i=1⋃∞Ri,若∣A∣=n,则t(R)=i=1⋃nRi(说白了就是把前n个幂运算的结果都并一遍)
六、特殊关系
1、等价关系
A、等价关系
R是非空集合A上的关系
(1)定义:R是自反的、对称的、传递的
(2)既然是关系,那么本身是一个集合,元素是序偶
(3)同余关系:除以一个数取模相等的一堆数的集合(元素不是序偶而是数字)
B、集合的划分
划分的定义:一个集合S,其中的元素是集合 S 1 , S 2 . . . S n S_1,S_2...S_n S1,S2...Sn,这些元素是非空集合A的子集,且自身不是空集;这些元素(集合)间没有交集;这些元素(集合)的并集是非空集合A
C、等价类与商集
(1)等价类定义
[ x ] R = { y ∣ y ∈ A ∧ < x , y > ∈ R } [x]_R = \{y|y\in A \land <x,y>\in R\} [x]R={y∣y∈A∧<x,y>∈R}
x关于R的一个等价类,x称为生成元、代表元、典型元
(2)等价类本身是一个集合,元素是A中的某些元素,本身是A的子集(其实就是块),等价类之间没有交集
(3)这么看划分和商集其实一个东西,那么二者之间的区别是什么?
划分是先划分,再根据这些划分的块给出划分的标准;等价类是先有划分的标准,再根据这些标准将A进行划分
(4)商集定义
A / R = { [ x ] R ∣ x ∈ A } A/R = \{[x]_R|x\in A\} A/R={[x]R∣x∈A}
(5)商集本身是集合,元素是等价类(说白了就是把上面的等价类再打包到一起,叫了个商集,不然的话一堆零散的等价类咋处理呢,对吧)
(6)如果R是等价关系,那么A/R是A的一个划分,且R是这个划分中的块的全关系的并集;R与集合A的划分是一一对应关系
2、次序关系
R是非空集合A上的关系
(1)拟序关系
①定义:R是反自反、反对称、传递的(其实反自反和传递就能推出反对称),记作“<”
拟序的逆关系也是拟序
(2)偏序关系
①定义:R是自反的、反对称的、传递的,记作“ ≤ \le ≤”
②哈斯图:节点数字大小是有严格顺序的,小的在下,大的在上;有关系则连线,无关系则不连
③特殊元素:以下所有概念都是在二者之间存在偏序关系的情况下,这是非常重要的!!!
必须在子集中找
最大元 ⟺ ( ∀ x ) ( x ∈ B → x ≤ b ) = 1 \iff (\forall x)(x \in B\to x\le b) = 1 ⟺(∀x)(x∈B→x≤b)=1 | 具有唯一性
最小元 ⟺ ( ∀ x ) ( x ∈ B → x ≥ b ) = 1 \iff (\forall x)(x \in B\to x\ge b) = 1 ⟺(∀x)(x∈B→x≥b)=1 | 具有唯一性
极大元 ⟺ ( ∀ x ∈ B ) ( x ≥ b → b = x ) = 1 \iff (\forall x \in B)(x \ge b\to b = x) = 1 ⟺(∀x∈B)(x≥b→b=x)=1
极小元 ⟺ ( ∀ x ∈ B ) ( x ≤ b → b = x ) = 1 \iff (\forall x \in B)(x \le b\to b = x) = 1 ⟺(∀x∈B)(x≤b→b=x)=1
必须在集合A(“全集”)中找
上界:子集中任意元素都小于等于a,a则为子集的上界
下界:子集中任意元素都大于等于a,a则为子集的下界
最小上界 / 上确界:上界中最小的一个 | 具有唯一性
最大下界 / 下确界:下界中最大的一个 | 具有唯一性
b是最大元 ⟹ \implies ⟹b是极大元、上界、上确界
b是最小元 ⟹ \implies ⟹b是极小元、下界、下确界
b是上界 ⟹ \implies ⟹b是最大元
b是下界 ⟹ \implies ⟹b是最小元
(3)全序关系(理解为实数轴)
①定义:如果集合A中的任意两个元素之间都有偏序关系,那么称该关系为全序关系
②哈斯图理解:一条竖线
全序关系是偏序关系,反之则不然
(4)良序关系(理解为整数轴)
①定义:集合A中的任何一个非空子集都有最小元,则称此关系为良序关系
良序关系是偏序关系,反之则不然
良序关系是全序关系,反之则不然
有序全序集一定是良序集
全序关系、良序关系是特殊的偏序关系,良序关系一定是全序关系
七、函数
1、函数
(1)定义:每个 x ∈ A x\in A x∈A,都存在唯一的 y ∈ B y\in B y∈B,时的 < x , y > ∈ f <x,y>\in f <x,y>∈f,则称f为A到B的函数或者映射
∣ f ∣ = ∣ A (前域) ∣ (函数的基数) |f| = |A(前域)|(函数的基数) ∣f∣=∣A(前域)∣(函数的基数)
f ( x ) 表示一个变值, f 表示一个集合 f(x)表示一个变值,f表示一个集合 f(x)表示一个变值,f表示一个集合
函数中序偶的第一元素一定是不同的,因为一个前域只能对应一个后域
(2)函数的类型
单射:一个对应一个,不同序偶之间不存在任何的交集,且前域全覆盖
满射:后域全覆盖
双射:既是单射又是满射
以下的必要条件分别是:
单射:前域数量小于等于后域
满射:前域数量大于等于后域
双射:前后域数量相等
典型函数是满射
(3)常用函数
恒等函数:前域和后域的值相等,记作 I A I_A IA
常值函数:任意的前域都只能映射到后域中的一个值上
特征函数:自变量属于某个特定的集合则函数值为1,否则为0
向上取整函数
向下取整函数
布尔函数
(4)证明某种类型的函数时,要先证明其是函数
2、函数的运算
(1)复合运算
f ∘ g = { < x , z > ∣ ( x ∈ A ) ∧ ( z ∈ C ) ∧ ( ∃ y ) ( y ∈ B ∧ < x , y > ∈ R ∧ < y , z > ∈ S } f\circ g = \{<x,z>|(x\in A)\land (z\in C)\land (\exist y)(y\in B\land <x,y>\in R \land <y,z>\in S\} f∘g={<x,z>∣(x∈A)∧(z∈C)∧(∃y)(y∈B∧<x,y>∈R∧<y,z>∈S}
前提是f的后域是g的前域的真子集(充分条件)
复合运算满足结合律
复合运算不满足交换律!!!
f 、 g 是满、单、双射,那么复合后也是满、单、双射 f、g是满、单、双射,那么复合后也是满、单、双射 f、g是满、单、双射,那么复合后也是满、单、双射
如果复合后是满射,g是满射
如果复合后是单射,f是单射
如果复合后是双射,f是单射且g是满射(同样是证明方法)
(2)逆运算
定义:就是把前域和后域调换顺序
f − 1 是逆函数 f^{-1}是逆函数 f−1是逆函数
若 f 是从 A 到 B 的双射函数 若f是从A到B的双射函数 若f是从A到B的双射函数
f ∘ f − 1 = I A f\circ f^{-1} = I_A f∘f−1=IA
f − 1 ∘ f = I B f^{-1}\circ f = I_B f−1∘f=IB
I A ∘ f = f ∘ I B = f I_A \circ f = f\circ I_B = f IA∘f=f∘IB=f
一定要注意顺序问题
f 是双射函数,那么他的逆函数也是双射函数 f是双射函数,那么他的逆函数也是双射函数 f是双射函数,那么他的逆函数也是双射函数
注意区分关系的逆运算和函数的逆运算
任何关系都有逆关系
只有双射函数才有逆函数(题目中往往不常用)
关于求法,其实就是关于y=x对称的函数
3、置换函数
(1)定义:设A未有限集合,那么A到A的双射函数就叫做A的置换或排列,n叫做置换的阶
若A的基数为n,那么A上不同的置换函数的个数是n!
置换函数的性质满足上述一切性质,只不过是一种特殊的函数
八、图
1、基本概念
(1)基本定义
根据图产生的矩阵是邻接矩阵
两个端点相同的边称为环或自回路
仅由孤立点组成的图叫做零图
仅有一个节点的零图叫做平凡图
(2)图的分类
有向图
无向图
多重图:含有平行边
线图:非多重图
简单图:无环的线图
赋权图
(3)图的操作
边的收缩:将边删除,关联的两个节点收缩成一个节点
(4)子图与补图
子图:点和边是原图的子集
真子图:子图与原图不相同(注意:当点是子集时,可能存在边与原图相等的情况,如删除孤立节点)
生成子图:点相同,边是子集
导出子图:点是子集,边尽可能完全还原
(无向简单图)完全图:无向图中每两个点之间都有边相连,边的个数为 C n 2 C^2_n Cn2
(有向简单图)有向完全图:每两个点间都有方向相反的两条边(不重要)
(简单图的基础上)补图:点不变,边互补
(5)握手定理
图中节点度数的总和等于边数的2倍
推论:图中度数为奇数的节点个数为偶数
图中各个节点的出度数等于入度数等于边数
(6)图的同构
结点数目相同;边数相同;度数相同的结点个数相同
2、通路、回路与连通性
(1)
简单通(回)路:通(回)路上每一条边都不相同
基本通(回)路:通(回)路上每一个结点都不相同
(2)求路径长度
A = ( a i j ) n × n 为 G 的邻接矩阵则 a i j ( m ) 为 G 中从结点 v i 到 v j 长度为 m 的通路数目, ∑ i = 1 n ∑ j = 1 n a i j ( m ) 为 G 中长度为 m 的通路(含回路)的总数 A=(a_{ij})_{n\times n}为G的邻接矩阵则a^{(m)} _{ij}为G中从结点v_i到v_j长度为m的通路数目,\sum^n _{i=1}\sum^n_{j=1}a^{(m)} _{ij}为G中长度为m的通路(含回路)的总数 A=(aij)n×n为G的邻接矩阵则aij(m)为G中从结点vi到vj长度为m的通路数目,∑i=1n∑j=1naij(m)为G中长度为m的通路(含回路)的总数
画邻接矩阵会有更好的理解_{k, 否则,k=min{m|a^{(m)} _{ij}, m=1,2,…,n$} }
(3)可达性表示
d ( v i , v j ) = { k , 否则, k = m i n { m ∣ a i j ( m ) , m = 1 , 2 , . . . , n } ∞ , 如果所有通路均为 0 d(v_i,v_j)=\{ ^{\infty, 如果所有通路均为0} _{k, 否则,k=min\{m|a^{(m)} _{ij}, m=1,2,...,n\}} d(vi,vj)={k,否则,k=min{m∣aij(m),m=1,2,...,n}∞,如果所有通路均为0
可达性矩阵:无非就是把邻接矩阵里面具体的数字换成了1、0,能达到则1,否则为0
(4)根据连通性给无向图分类
连通图:任何两个结点都是可达的无向图(否则为分离图、非连通图)
(5)连通分支
所有的可达关系R的每个等价类的导出子图, p ( G ) p(G) p(G)表示连通分支数
桥:删去这条边连通分支数就会+1的边叫做桥
(6)根据连通性给有向图分类
连通图/弱连通图:G化为无向图为连通图
单向连通图:任何一对结点间至少有一个结点道另一个结点是可达的
强连通图:任何一对结点间都可达
弱——>单向——>强
证明单向连通图:
G中必存在一条经过所有结点的通路
可达性矩阵及其转置矩阵经过布尔运算后得到的矩阵除对角线上的元素外其余元素均为1
证明强连通图:
G中存在一条经过所有结点的回路
可达性矩阵中多有元素均为1
证明弱连通图:
布尔运算后的矩阵作为邻接矩阵求得的可达性矩阵所有元素均为1
九、树
1、树
(1)定义
连图而不含回路的无向图
(2)证明无向图是树
设 G = < V , E > , ∣ V ∣ = n , ∣ E ∣ = m G=<V,E>,|V|=n,|E|=m G=<V,E>,∣V∣=n,∣E∣=m
连图而不含回路
G中无回路,且m=n-1
G是连通的,且m=n-1
G中无回路,若再增加一条边,则会得到唯一的一个基本回路
G是连通的,若删除一条边,则图不再连通
G中每一对结点都有唯一的一条基本通路
(若m<n-1,则p(G)>1;若m>n-1,那么p(G)不一定等于1)
(3)生成树
一个图的生成子图若是树,那么这个树就是生成树
图存在生成树的撑腰条件是:图是连通的
如何通过图产生生成树
破圈法:删掉m-n+1条边
避圈法:选择n-1条边
广搜法
(4)最小生成树
Prim算法:针对点,划分两个集合,找两个集合的最短桥即可
Kruskal算法:针对边,从权值最小的边开始选,但是选的过程中要避免成回路
(5)出度一定等于入度!!!
2、根树
(1)一些定义
K元完全树:每个分支结点都有K个儿子(不强调有序)
(2)重要!!!假设K元完全树种,叶数为t,分支点数为i,则:
k × i = i − 1 + t k\times i=i-1+t k×i=i−1+t(-1因为根节点没有入度)
(由握手定理推论(即有向图中,出度等于入度)而来)
化简为: ( k − 1 ) × i = t − 1 化简为:(k-1)\times i = t-1 化简为:(k−1)×i=t−1
(3)根树转化为二元树:
弟弟变右儿子
还原则到过来即可
(4)森林转化为二元树:
树内部采用(3)的办法
树之间则采用将剩下的每棵二元树作为左边的二元树的根的右子树即可
(5)最优树与哈夫曼算法
前缀码: A = { b 1 , b 2 , . . . , b m } 是一串符号串集合, 前缀码:A=\{b_1,b_2,...,b_m\}是一串符号串集合, 前缀码:A={b1,b2,...,bm}是一串符号串集合,
对任意的两对符号串,二者彼此都不是彼此的前缀即可 对任意的两对符号串,二者彼此都不是彼此的前缀即可 对任意的两对符号串,二者彼此都不是彼此的前缀即可
十、特殊图
1、欧拉图
(1)定义
针对边,即经过图中每条边一次且仅一次的通路(回路)叫欧拉通路(回路)
注意:拥有欧拉回路的图才是欧拉图
规定平凡图为欧拉图
(2)判定欧拉图
无向图G有欧拉通路,当且仅当G是连通的,且G仅有零个或两个奇度数的结点
无向图G有欧拉回路,当且仅当G是连通的,且G的所有结点都是偶度数
有向图G有欧拉通路,当且仅当G是连通的,且除了两个结点以外,其余结点入度等于出度,针对这两个结点,一个结点入度比出度大一,一个出度比入度大一
有向图G有欧拉回路,当且仅当G是连通的,且G的所有结点的出度等于入度
(3)求欧拉回路的Fleury算法
两个点集,一个是找过的,一个是未找过的,从这两个集合间找尽可能不是桥的边,如果没有不是桥的边那么选桥
2、哈密顿图
(1)定义
针对结点,即经过图中所有结点一次且仅一次的通路(回路)为哈密顿通路(回路)
注意:存在哈密顿回路的图才是哈密顿图
(2)判定哈密顿图
若无向图G是哈密顿图,则 p ( G − V 1 ) ≤ ∣ V 1 ∣ p(G-V_1)\le |V_1| p(G−V1)≤∣V1∣,即删去点的个数大于等于删去点后图的连通分支数
这个推论的逆否命题可以用来证明G不是哈密顿图,即 p ( G − V 1 ) > ∣ V 1 ∣ p(G-V_1)\gt |V_1| p(G−V1)>∣V1∣ (这个是最有用的)(删去的节点要找度数最多的节点集)
若无向图G中存在哈密顿通路,则 p ( G − V 1 ) ≤ ∣ V 1 ∣ + 1 p(G-V_1)\le |V_1| + 1 p(G−V1)≤∣V1∣+1
证明简单无向图G中存在哈密顿通路:(这只是个充分条件,绝不能反用)
若G是有n个结点的简单无向图,如果对任意两个而不相邻的结点,均有
d e g ( u ) + d e g ( v ) ≥ n − 1 deg(u)+deg(v)\ge n-1 deg(u)+deg(v)≥n−1
那么G中存在哈密顿通路
证明简单无向图G中存在哈密顿回路:
若G是有n个结点的简单无向图,如果对任意两个而不相邻的结点,均有
d e g ( u ) + d e g ( v ) ≥ n deg(u)+deg(v)\ge n deg(u)+deg(v)≥n
那么G中存在哈密顿回路(其实也就证明了G是哈密顿图)
证明简单无向图G是哈密顿图:
若G是有n个结点的简单无向图,如果对任意结点,均有
d e g ( v ) ≥ n 2 deg(v)\ge \frac{n}{2} deg(v)≥2n
那么G是哈密顿图
证明简单有向图G中存在哈密顿通路:
若G是有n个结点的一些简单有向图,如果忽略G中边的方向得到的无向图中含生成子图 K n K_n Kn,则G中存在哈密顿通路
3、偶图
(1)定义
无向图G的结点集可以划分为两个无补集的集合,且这两个集合并集是全集,两个集合使G中的任意一条边的两个端点分属不同的集合,那么G是偶图(二分图)
平凡图、零图是特殊的偶图
如果两个集合中的每一对结点间都有且仅有一条边相关联,那么G是完全偶图
(2)判定偶图
G是偶图充要条件是G的所有回路的长度均为偶数(逆否命题可以证不是偶图)
(3)匹配问题
霍尔定理:
G = < V 1 , E , V 2 > G=<V_1,E,V_2> G=<V1,E,V2>中存在匹配,充分必要条件是, V 1 V_1 V1中任意k个结点至少与 V 2 V_2 V2中任意k个结点相邻
t条件:
若 V 1 V_1 V1中每个结点至少关联t条边, V 2 V_2 V2中每个结点至多关联t条边,那么G中存在匹配(必要条件)
(4)注意:
常用逆否命题证明G不是偶图
匹配本质上是一个单射
通常在考察相异性条件之前,先判断是否满足t条件
∣ V 1 ∣ ≤ ∣ V 2 ∣ |V_1|\le |V_2| ∣V1∣≤∣V2∣只是存在匹配的必要条件,并不是充分条件
十一、代数系统
1、代数系统
(1)定义
代数系统
本质上还是n个集合上的运算后的映射,其实就是映射
代数系统必须满足:集合非空+封闭性
子代数系统
子集合(非空)+ 新的集合上的运算满足封闭性
2、基本运算和性质
(1)运算律
结合律:
( a ∗ b ) ∗ c = a ∗ ( b ∗ c ) (a*b)*c = a*(b*c) (a∗b)∗c=a∗(b∗c)
交换律:
a ∗ b = b ∗ a a*b = b*a a∗b=b∗a
消去律:
a ∗ x = a ∗ y ⟹ x = y a*x=a*y\implies x=y a∗x=a∗y⟹x=y,那么a是左可消去元
x ∗ a = y ∗ a ⟹ x = y x*a=y*a\implies x=y x∗a=y∗a⟹x=y,那么a是右可消去元
左右均存在那么满足消去律
幂等律:
a ∗ a = a a*a=a a∗a=a
可以推得: a n ∗ a m = a n + m 、 ( a m ) n = a m n a^n*a^m=a^{n+m}、(a^m)^n=a^{mn} an∗am=an+m、(am)n=amn
分配律:
对于一个二元代数系统 < A , ∗ , ∘ > <A,*,\circ> <A,∗,∘>
a ∗ ( b ∘ c ) = ( a ∗ b ) ∘ ( a ∗ c ) a*(b\circ c)=(a*b)\circ (a*c) a∗(b∘c)=(a∗b)∘(a∗c)左可分配
( b ∘ c ) ∗ a = ( b ∗ a ) ∘ ( c ∗ a ) (b\circ c)*a=(b*a)\circ (c*a) (b∘c)∗a=(b∗a)∘(c∗a)右可分配
左右均有那么满足分配律
吸收率:
x ∗ ( x ∘ y ) = x 、 x ∘ ( x ∗ y ) = x x*(x\circ y)=x、x\circ (x*y)=x x∗(x∘y)=x、x∘(x∗y)=x
以上均满足那么满足吸收率
其实和集合的运算是一样的
(2)性质
幺元(标准元)e:
a ∗ e = e ∗ a = a a*e=e*a=a a∗e=e∗a=a
求幺元要先假设存在,然后去求即可
在运算表中看即为,行列中和表头完全一致
零元 θ \theta θ:
θ ∗ a = a ∗ θ = θ \theta *a=a*\theta=\theta θ∗a=a∗θ=θ
零元不是消去元,那么可以知道有零元的情况下运算不满足消去律
逆元 a − 1 a^{-1} a−1:
a ∗ a − 1 = a − 1 ∗ a = e a*a^{-1} = a^{-1}*a=e a∗a−1=a−1∗a=e
逆元是可消去元
在二元代数系统中,存在唯一幺元、零元,其中的元素若存在逆元,那么该元素的逆元也唯一
在二元代数系统A中,如果a,b分别有逆元,那么
( a ∗ b ) − 1 = b − 1 ∗ a − 1 (a*b)^{-1}=b^{-1}*a^{-1} (a∗b)−1=b−1∗a−1
对于上述的元,如果要求,那么一概先假设再求解
3、同态与同构
(1)同态映射
定义:
< A , ∗ > <A,*> <A,∗>和 < B , ∘ > <B,\circ> <B,∘>是两个二元代数系统, ψ \psi ψ是A到B的映射,若 ∀ x ∈ A , ∀ y ∈ B \forall x\in A,\forall y\in B ∀x∈A,∀y∈B均有
ψ ( x ∗ y ) = ψ ( x ) ∘ ψ ( y ) \psi(x*y)=\psi(x)\circ \psi(y) ψ(x∗y)=ψ(x)∘ψ(y)
那么是从 < A , ∗ > <A,*> <A,∗>到 < B , ∘ > <B,\circ> <B,∘>的同态映射,即二者之间同态
个人理解为映射中的映射,哈哈,倒是很有意思
如果该同态映射满足单射、满射(即为双射)那么就成了同构
同构实际上就是图中的边不变,然后结点的内容给你变一下,可以借此这么理解,实际上就是一种以某个元素集合的运算与另外一种以某个元素集合的运算的结构是相同的
如果 ψ \psi ψ是 < A , ∗ > <A,*> <A,∗>到 < B , ∘ > <B,\circ> <B,∘>的同态映射,那么 < ψ ( A ) , ∘ > <\psi (A),\circ> <ψ(A),∘>是 < B , ∘ > <B,\circ> <B,∘>的子代数
这个很好理解啊,首先前者一定是封闭的,毕竟都满足同态映射了(A自身毕竟就是封闭的,所以x*y也是在A中的),其次一定是(真)子集且非空
(2)同态的性质
大前提 ψ \psi ψ是 < A , ∗ > <A,*> <A,∗>到 < B , ∘ > <B,\circ> <B,∘>的满同态
∗ * ∗可交换、可结合,那么 ∘ \circ ∘也是可交换、可结合
—————————————————————————————————
a是 < A , ∗ > <A,*> <A,∗>的幺元、零元、幂等元、逆元、可消去元,那么 ψ ( a ) \psi (a) ψ(a)是 < B , ∘ > <B,\circ> <B,∘>的幺元、零元、幂等元、逆元、可消去元
证明就用定义证就行,不用想太多
多元代数系统同理
十二、群
注:在这里面的研究都是按照群——含幺半群——子群——同态同构的顺序进行,因此重复定义的部分不再赘述,以“…亦是如此”代替
1、半群与含幺半群
(1)半群与含幺半群
在代数系统上继续满足结合律即为半群(即为运算是非空、封闭、结合)
含幺半群(独异点)是半群中含有幺元
子半群亦是如此
(2)元素的幂
规定 a 0 = e a^0=e a0=e
构造 A = < S , ∗ > A=<S,*> A=<S,∗>的子半群的最好方式即为:
{ a n ∣ a ∈ S , n ∈ Z + } \{a^n|a\in S, n\in Z^+\} {an∣a∈S,n∈Z+}
整数次幂一定是子(半)群
(3)循环半群
存在元素a,对于运算集合中的任意元素x都有
a n = x a^n=x an=x
那么该群是循环群,a为生成元(与划分中的代表元非常相似)
循环含幺半群亦是如此
每个循环(含幺)半群都是可交换(含幺)半群
推广:
< N , + > <N,+> <N,+>是循环含幺半群
—————————————————————————————————
< n , + n > <\frac{n}{},+_n> <n,+n>是循环含幺半群
对 ∀ a ∈ n \forall a\in \frac{n}{} ∀a∈n,若 ( a . n ) = 1 (a.n)=1 (a.n)=1,则a是 < n , + n > <\frac{n}{},+_n> <n,+n>的生成元(说白了就是找互质的)
其中,如果n是素数,那么除了幺元0以外,其余的都是生成元(那肯定就都互质了呗)
注意:
在循环半群中, a 0 a^0 a0可能没有意义,因为可能没有幺元
2、群及其性质
(1)群的定义
在代数系统上继续满足结合律、有幺元、有逆元即为群(即为运算是非空、封闭、结合、幺元、逆元)
阿贝尔群就是可交换群
置换群:
说白了就是群中的元素集合变成了一个双射函数(从X映射到X上的自映射)的集合,运算是函数的符合运算
其中恒等映射就是幺元,而且恒等映射是证明满足群的定义的突破口
n阶置换群是啥意思呢?就是X的阶hhh
(2)群的性质
群G满足:
运算一定满足消去律(因为逆元就是消去元啊)
除幺元e以外无其他幂等元,因为要满足互异性原理
阶大于1的群G不可能有零元,还是因为要满足互异性原理
( a ∗ b ) − 1 = b − 1 ∗ a − 1 (a*b)^{-1}=b^{-1}*a^{-1} (a∗b)−1=b−1∗a−1(因为有逆元啊)
一定要满足集合的互异性原理(利用反证法)(最根本是的是来源于集合的性质)
(3)元素的周期
a n = e a^n=e an=e
n即为a的周期、a的阶,记为 ∣ a ∣ |a| ∣a∣
幺元的周期为1
任意元素和该元素的逆元的周期相同
如果a的周期是m,且 a n = e a^n=e an=e,那么m|n(n=km)
如果周期为m,那么对于周人整数k, a k a^k ak的周期为
m ( k , m ) {m\over {(k,m)}} (k,m)m
( k , m ) (k,m) (k,m)是k与m的最大公因数,当等于1时,意思是互质
有限群中的每个元素的周期都是有限的,且不大于群的阶(这个也很好理解,总不可能周期出来比原来的元素还多吧)
(4)子群
子群定义:亦是如此
平凡子群:一个是只有标准元,一个是自己本身
如何证明子群
方法一:
充要条件:①非空子集中任意两个元素满足封闭性,即 a ∗ b ∈ S a*b\in S a∗b∈S;②非空子集中任意一个元素存在逆元,即 a − 1 ∈ S a^{-1}\in S a−1∈S
方法二:
充要条件:非空子集中任意两个元素满足 a ∗ b − 1 ∈ S a*b^{-1}\in S a∗b−1∈S即可
方法三:
原群中任意元素a的整数次幂组成的子集是子群
方法四:
有限非空子集S中任意两个元素满足封闭性,即 a ∗ b ∈ S a*b\in S a∗b∈S
方法五:
有限群的非空子集S中任意两个元素满足封闭性,即 a ∗ b ∈ S a*b\in S a∗b∈S
前三个方法常用且限制较小
(5)群的同态
定义不再提及
性质:
ψ ( a − 1 ) = ( ψ ( a ) ) − 1 \psi(a^{-1})=(\psi(a))^{-1} ψ(a−1)=(ψ(a))−1,其余的不再赘述
ψ \psi ψ是 < A , ∗ > <A,*> <A,∗>到 < B , ∘ > <B,\circ> <B,∘>的群同态,那么 < ψ ( A ) , ∘ > <\psi(A),\circ> <ψ(A),∘>是 < B , ∘ > <B,\circ> <B,∘>的子群
存在 < A , ∗ > <A,*> <A,∗>到 < B , ∘ > <B,\circ> <B,∘>的满同态,如果前者是群,后者是代数系统,那么后者是群
阶小于等于3的群的同构只有一个
阶为4的群的同构只有两个(一个是包含一个单位元和三个阶为2的元素,另一个是包含一个单位元,一个阶为2的元素,两个阶为4的元素)这些群都满足交换律
3、特殊群
(1)交换群
如何证明一个群是交换群:
方法一:定义
方法二: ∀ a , b ∈ G , 有 ( a ∗ b ) 2 = a 2 ∗ b 2 \forall a,b\in G,有(a*b)^2=a^2*b^2 ∀a,b∈G,有(a∗b)2=a2∗b2(充要条件)
(2)循环群(重点)
定义:
存在一个元素g,其元素的m次方可以表示集合中任意的元素,那么这个元素g是生成元(记为<g>),且这个群是循环群
性质:
每个循环群都是交换群
群 < n , + n > <\frac{n}{},+_n> <n,+n>是一个循环群,其生成集为其中与n互质的元素
素数阶循环群 < n , + n > <\frac{n}{},+_n> <n,+n>,除幺元以外的一切元素都是群的生成元
实际上,循环群只有两类,整数加法群和n阶剩余类加群,所以无限循环群和整数加法群同构,阶为n的有限循环群与n阶剩余类加群同构
无限循环群有且仅有两个生成元
阶为素数的循环,除幺元以外的一切元素都是G的生成元
阶为正整数n的循环群,对 y = ∀ a x ∈ G y=\forall a^x\in G y=∀ax∈G,只要x和n互质,那么y就是G的一个生成元
循环群的子群一定是循环群
若一个n阶循环群,则由n的一切因数d都可以对应产生一个且仅一个d阶子群,该d阶循环子群的生成元为 a x a^x ax, x = n d x=\frac{n}{d} x=dn
如何证明循环群:
首要关键是证明有生成元即可,那么先假设有生成元,再根据其定义计算生成元
4、陪集与拉式定理
(1)陪集
定义:
< G , ∗ > 是群, < H , ∗ > 是其任意子群,对 ∀ a , b ∈ G ,如果有 a ∗ b − 1 ∈ H ,则称 a , b 为模 H 同余关系,并且这种关系是等价关系(这种关系是 G 中两个元素之间的关系,即 a 与 b 之间的关系,要明晰这种关系的两个元素是谁) <G,*>是群,<H,*>是其任意子群,对\forall a,b\in G,如果有a*b^{-1}\in H,则称a,b为模H同余关系,并且这种关系是等价关系(这种关系是G中两个元素之间的关系,即a与b之间的关系,要明晰这种关系的两个元素是谁) <G,∗>是群,<H,∗>是其任意子群,对∀a,b∈G,如果有a∗b−1∈H,则称a,b为模H同余关系,并且这种关系是等价关系(这种关系是G中两个元素之间的关系,即a与b之间的关系,要明晰这种关系的两个元素是谁)
(2)左陪集、右陪集
左陪集: a H = { a ∗ h ∣ h ∈ H } aH=\{a*h|h\in H\} aH={a∗h∣h∈H}为子群H在群G中的一个左陪集
右陪集: H a = { h ∗ a ∣ h ∈ H } Ha=\{h*a|h\in H\} Ha={h∗a∣h∈H}为子群H在群G中的一个右陪集
a为陪集的代表元
(3)拉式定理(重点)
拉式定理:有限群 < G , ∗ > <G,*> <G,∗>的阶n一定被它的任意子群的阶m所等分,即 k = n / m k=n/m k=n/m,称k为G内的H的指数,k是关于H的一切不同左(右)陪集的个数
结论1:设H是有限群G的子群,则H的阶整除G的阶
结论2:素数阶有限群 < G , ∗ > <G,*> <G,∗>只有平凡子群,无真子群
结论3:有限群中任意元素的周期都整除群的阶
结论4:阶为n的有限群中,对集合中任意元素都有 a n = e a^n=e an=e
结论5:阶为n的有限群都有循环子群的存在,该子群的生成元的周期均能整除n
结论6:素数阶有限群G都是循环群,并且除幺元以外的其他元素都是生成元
6、商群
(1)定义
H是G的子群,对于G中任意的元素都有,aH=Ha,那么H为G的正规子群(不变子群)
(2)如何证明H是正规子群:
充要条件:对 ∀ a ∈ G , h ∈ H \forall a\in G,h\in H ∀a∈G,h∈H,都有 a ∗ h ∗ a − 1 ∈ H a*h*a^{-1}\in H a∗h∗a−1∈H
(3)性质:
交换群的任何子群都是正规子群
十三、格与布尔代数
1、格
(1)偏序格
定义: < L , ∧ , ∨ > <L,\land ,\lor > <L,∧,∨>是一个偏序集,如果对 ∀ a , b ∈ L \forall a,b\in L ∀a,b∈L, { a , b } \{a,b\} {a,b}都有最大下界和最小上界,则称 < L , ∧ , ∨ > <L,\land ,\lor > <L,∧,∨>为格。
我们将这种用偏序关系定义的格叫做偏序格
∧ / ∗ \land /* ∧/∗保交,求最大下界
∨ / ⊕ \lor /\oplus ∨/⊕保联,求最小上界
(2)代数格
定义: < L , ∧ , ∨ > <L,\land ,\lor > <L,∧,∨>是一个具有两个二元运算的代数系统,如果运算 ∧ \land ∧和 ∨ \lor ∨满足交换律、结合律和吸收率,则称 < L , ∧ , ∨ > <L,\land ,\lor > <L,∧,∨>是格
我们将这种用代数系统定义的格叫做代数格(但是本质上两个格是同一个东西,都是格)
(3)对偶格
< L , ≤ > <L,\le> <L,≤>与 < L , ≥ > <L,\ge> <L,≥>就是对偶格,在哈斯图上的体现就是相互颠倒
需要注意的是,前一个格的最大下界是后一个格的最小上界,前一个格的最小上界是后一个格的最大下界
(4)格的性质
(5)子格与格同态
子格:定义不再赘述
需要注意的是,子格的最大上界和最小下界必须和原来的格相同
格同态和同构:
定义不再赘述
注意同态必须是两个运算都满足同态
但是它有一个好性质,保序性
(6)分配格
定义:满足分配律的格
如何证明分配格:(充要条件)
格中没有任何子格与下图中两个具有五元素的格中的任何一个格同构
性质:
所有的链都是分配格
四元素以下的格都是分配格
五元素的格仅有两个格是非分配格(如上图那俩),其余三个都是分配格
设 < L , ∧ , ∨ > <L,\land,\lor> <L,∧,∨>是分配格,对于 ∀ a , b , c ∈ L \forall a,b,c\in L ∀a,b,c∈L,如果 a ∧ x = a ∧ y a\land x=a\land y a∧x=a∧y且 a ∨ x = a ∨ y a\lor x=a\lor y a∨x=a∨y(必须同时成立),则 x = y x=y x=y
(7)模格
设 < L , ∧ , ∨ > <L,\land,\lor> <L,∧,∨>是格,如果对 ∀ a , b , c ∈ L \forall a,b,c\in L ∀a,b,c∈L,都有
a ≤ b ⟹ a ∨ ( b ∧ c ) = b ∧ ( a ∨ c ) a\le b\implies a\lor (b\land c)=b\land (a\lor c) a≤b⟹a∨(b∧c)=b∧(a∨c)或者 a ≥ b ⟹ a ∧ ( b ∨ c ) ⟹ b ∨ ( a ∧ c ) a\ge b\implies a\land (b\lor c)\implies b\lor(a\land c) a≥b⟹a∧(b∨c)⟹b∨(a∧c)
那么 < L , ∧ , ∨ > <L,\land,\lor> <L,∧,∨>是模格
分配格是模格【根据定义其实可以看出来,定义是用到了分配律的,所以如果格满足分配律(也就是分配格)那么它就是模格】
性质:
链格都是模格(毕竟都是分配格)
四元以下的格都是模格(毕竟都是分配格)
五个元素的格仅有一个不是模格(如上图右边那个),其余四个都是模格
(8)有界格与有补格
有界格定义:
如果存在一个格中的元素a,使得a偏序与格中的任何元素(或格中的任何元素都偏序于a),那么a为格的全下界(或全上界),分别记为0(或1),其中具有全上界和全下界的格叫做有界格
有限格一定是有界格,但是有界格不一定是有有限格
有界格性质:
有界格的全上界和全下界必唯一
有补格定义:
在有界格中,对于格中任意一个元素a,如果格中存在一个元素b,使得 a ∧ b = 0 、 a ∨ b = 1 a\land b=0、a\lor b=1 a∧b=0、a∨b=1,那么b是a的补元,记为 a ′ a' a′,如果有界格中所有元素都有补元,那么这个有界格是有补格
在有界分配格中,如果一个元素有补元,那么这个补元必唯一
(反过来如果一个有界格中的元素有两个及以上的补元,那这个格肯定不是分配格!!!)
在有补分配格中,每一个元素都一定有补元(人家都说是有补格了那当然啊,废话简直是)
在有补分配格中,对于格中任意的两个元素a,b,有
( a ′ ) ′ = a (a')'=a (a′)′=a
( a ∧ b ) ′ = a ′ ∨ b ′ , ( a ∨ b ) ′ = a ′ ∧ b ′ (a\land b)'=a'\lor b',(a\lor b)'=a'\land b' (a∧b)′=a′∨b′,(a∨b)′=a′∧b′
a ≤ b ⟺ b ′ ≤ a ′ a\le b\iff b'\le a' a≤b⟺b′≤a′
a ≤ b ⟺ a ∧ b ′ = 0 ⟺ a ′ ∨ b = 1 a\le b\iff a\land b'=0\iff a'\lor b=1 a≤b⟺a∧b′=0⟺a′∨b=1
2、布尔代数
(1)定义
有补分配格
在一个代数系统中,如果两个运算均满足交换律、分配律、同一律(存在0、1使得 a ∧ 1 = a , a ∨ 0 = a a\land 1=a,a\lor 0=a a∧1=a,a∨0=a)、互补律(即存在补元),那么这个代数系统是布尔代数
(2)子布尔代数
非空、封闭、0、1(两个特异元)存在于其中
平凡子布尔代数:本身和{0,1}
(3)布尔同态
定义不再赘述
性质:
f ( x ′ ) = ¬ f ( x ) f(x')=\lnot f(x) f(x′)=¬f(x)
f ( 0 ) = α , f ( 1 ) = β f(0)=\alpha,f(1)=\beta f(0)=α,f(1)=β
(4)性质
有限布尔代数的元素个数必为 2 n 2^n 2n,n是布尔代数作为偏序集中所有覆盖0的元素的个数
具有相同基数的有限布尔代数都是同构的