P1950 长方形
题目描述
小明今天突发奇想,想从一张用过的纸中剪出一个长方形。
为了简化问题,小明做出如下规定:
(1)这张纸的长宽分别为 n , m n,m n,m。小明将这张纸看成是由 n × m n\times m n×m个格子组成,在剪的时候,只能沿着格子的边缘剪。
(2)这张纸有些地方小明以前在上面画过,剪出来的长方形不能含有以前画过的地方。
(3)剪出来的长方形的大小没有限制。
小明看着这张纸,想了好多种剪的方法,可是到底有几种呢?小明数不过来,你能帮帮他吗?
输入格式
第一行两个正整数 n , m n,m n,m,表示这张纸的长度和宽度。
接下来有
n
n
n 行,每行
m
m
m 个字符,每个字符为 *
或者 .
。
字符 *
表示以前在这个格子上画过,字符 .
表示以前在这个格子上没画过。
输出格式
仅一个整数,表示方案数。
输入输出样例 #1
输入 #1
6 4
....
.***
.*..
.***
...*
.***
输出 #1
38
说明/提示
【数据规模】
对 10 % 10\% 10% 的数据,满足 1 ≤ n ≤ 10 , 1 ≤ m ≤ 10 1\leq n\leq 10,1\leq m\leq 10 1≤n≤10,1≤m≤10
对 30 % 30\% 30% 的数据,满足 1 ≤ n ≤ 50 , 1 ≤ m ≤ 50 1\leq n\leq 50,1\leq m\leq 50 1≤n≤50,1≤m≤50
对 100 % 100\% 100% 的数据,满足 1 ≤ n ≤ 1000 , 1 ≤ m ≤ 1000 1\leq n\leq 1000,1\leq m\leq 1000 1≤n≤1000,1≤m≤1000
代码内容
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=1e3+10;
ll h[N];
int main()
{
ll n,m;
cin>>n>>m;
ll ans=0;
for(ll i=1;i<=n;i++)
{
for(ll j=1;j<=m;j++)
{
char c;
cin>>c;
if(c=='.') ++h[j];
else h[j]=0;
}
for(ll j=1;j<=m;j++)
{
ll num=h[j];
for(ll k=j;k+m;k++)
{
if(!h[k]) break;
num=min(num,h[k]);
ans+=num;
}
}
}
cout<<ans<<endl;
return 0;
}