每日一刷——9.26——ACM训练题——Fibonacci Again

题目描述: 

There are another kind of Fibonacci numbers: F(0) = 7, F(1) = 11, F(n) = F(n-1) + F(n-2) (n>=2).

Input

Input consists of a sequence of lines, each containing an integer n. (n < 1,000,000).

Output

Print the word "yes" if 3 divide evenly into F(n).

Print the word "no" if not.

 输入样例:

0
1
2
3
4
5

输出样例:

no
no
yes
no
no
no

思路分析:

9.25碎碎念:

1.我感觉需要打点,如果不打点的话,时间计算上估计会超时吧

2.应该用什么东西接收输入的一系列数据,这些数据需要保存吗?是输入一个数据就输出一个yes或no吗?

9.29找到的解决方法:

为了方便求解,我们可以把原式 F(n) = F(n-1) + F(n-2) 等式左右两边都对3取模,即 F(n) %3 = (F(n-1) + F(n-2) ) %3

此式子由数论知识易知可以进一步等价于 F(n) %3 = (F(n-1) %3 + F(n-2) %3) %3。现在我们开始找规律:F(0)%3=1,F(1)%3=2,F(2)%3=(F(1)%3+F(0)%3)%3=0,同理 F(3)%3=2,F(4)%3=2,F(5)%3=1,F(6)%3=0,F(7)%3=1,F(8)%3=1,F(9)%3=2,

这时可以发现 F(0)%3=1,F(1)%3=2 ,又 F(8)%3=1,F(9)%3=2,表明此时已出现循环,即一个完整的循环为:{1,2,0,2,2,1,0,1},既然已经出现了循环,那么此题就可以划为找规律题目了,此问题就迎刃而解了。

代码实现:

#include<iostream>
using namespace std;
 
int main()
{
	int a[8]={1,2,0,2,2,1,0,1},n;
	while(cin>>n)
	{
		if(a[n%8]==0)
		{
			cout<<"yes"<<endl;
		}
		else
		{
			cout<<"no"<<endl;
		}
	}
    return 0;
}

题目分析Again :

7        1

11      2

18      0

29      2

47      2

76      1

123     0

199     1

322     1

确实是发现余数也是按照前两个余数之和等于下一个余数,然后九发现规律,确实是可以有循环,所以这个题目就简化为对8取余,如果得出来的结果充当a数组的下标时,发现确实为0,那么这个数就是可以被3除尽,真的很奇妙!!!

有时候除了打点,也可以考虑一下循环,尤其是本身数字就很有规律时! 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值