AtCoder Beginner Contest 369 ABCDE

背景

A题:369 

思路

假设A<=B

分类讨论,有如下两种情况

        1.A==B,情况唯一,另外一个数只能取A

        2.A<B,首先我们可以以B-A为公差d构造,另外一个数可以取A-d或者B+d。(然后接着考虑放在A和B中间的情况,样例中给了,只要B-A为偶数即可)

代码

inline void solve() {
     int a, b; cin >> a >> b;
     if (a > b) swap(a, b);
     if (a == b) cout << 1 << endl;
     else cout << 2 + ((b - a) % 2 == 0) << endl;
	 return;
}

B题:Piano 3

思路

这个是一步一步操作的,所以说左手和右手一定是放在第一次进行对应手操作的位置上的。

按题意模拟即可

代码

inline void solve() {
     int n; cin >> n;
     int ans = 0;
     int l = -1, r = -1;
     for (int i = 1; i <= n; i ++ ) {
        int x; char op; cin >> x >> op;
        if (op == 'L') {
            if (l != -1) ans += abs(l - x);
            l = x;
        }else {
            if (r != -1) ans += abs(r - x);
            r = x;
        }
     }
     cout << ans << endl;
	 return;
}

C题:Count Arithmetic Subarrays 

思路

双指针

为什么:

        因为对于一个等差数列区间,我们可以用双指针进行维护,并且等差区间内部也是等差的。如果在某一个点不满足等差条件的话,那么对于这个点的右边的所有点都无法算到这个等差数列区间去了。

3 6 9 3 1 1 1

这个我们只能找到3 6 9,后面那个3无法加入到前面的等差区间,所以后面的也不行。“等差区间内部也是等差的”,所以我们可以直接O(n)进行计算

怎么做:定义j为1,i从2开始遍历

        一开始我们可以找到3 6 9,看上面的样例,这个对答案的贡献为3+2+1-1。为什么要减去一呢?要去重。(这点可以结合代码进行理解)之后我们将j移到9的位置上(因为9也可能作为等差区间的开头),i继续进行遍历即可。

代码

inline void solve() {
     int n; cin >> n;
     vector<ll> a(n + 1);
     for (int i = 1; i <= n; i ++ ) cin >> a[i];
     int j = 1;
     ll ans = 0;
     for (int i = 2; i <= n; i ++ ) {
        if (a[i] - a[i - 1] != a[j + 1] - a[j]) {
            ll len = i - j;
            ans += (1 + len) * len / 2 - 1;
            j = i - 1;
        }
     }
     ll len = n + 1 - j;
     ans += (1 + len) * len / 2;
     cout << ans << endl;
	 return;
}

D题:Bonus EXP

思路

可打可不打么?两种选择,一眼dp

我定义的是dp[N][2],其中dp[i][1]代表着前i个怪兽打奇数次的最大exp,同理dp[i][0]对应偶数次

转移方程(很容易想到)

dp[i][1] = max(dp[i-1][1], dp[i-1][0] + a[i])--不打或者打

dp[i][0] = max(dp[i-1][0], dp[i-1][1] + 2 * a[i])--不打或者打

其中要注意,偶数次的转移必须满足i>=2

你这只少要打两次才能双倍经验吧

代码

const int N = 2e5 + 9;
ll dp[N][2];
inline void solve() {
     int n; cin >> n;
     for (int i = 1; i <= n; i ++ ) {
        ll x; cin >> x;
        dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + x);
        if (i >= 2) dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + 2 * x);
     }
     cout << max(dp[n][0], dp[n][1]) << endl;
	 return;
}

E题:Sightseeing Tour

思路

暴力枚举

它这题目到底什么意思呢?

要求你必须走这k条边

你一开始从1出发,要经过这k条边,然后到达点n

那就只是思考这k条边怎么走的问题了,首先枚举顺序,接着枚举从那边进那边出即可(这步可以直接暴力实现,k<=5)

这样我们的路径上就必定会经过这k条边,我们一次将其“连起来即可”

连起来的操作我们用从几号点到几号点的最小距离即可(Floyd)

代码

ll d[410][410];
inline void solve() {
     int n, m; cin >> n >> m;
     memset(d, 63, sizeof d);
     for (int i = 1; i <= n; i ++ ) d[i][i] = 0;
     vector<array<ll, 3>> a(m + 1);
     for (int i = 1; i <= m; i ++ ) {
        ll u, v, t; cin >> u >> v >> t;
        a[i] = {u, v, t};
        d[u][v] = d[v][u] = min(d[v][u], t);
     }
     for (int k = 1; k <= n; k ++ ) {
        for (int i = 1; i <= n; i ++ ) {
            for (int j = 1; j <= n; j ++ ) {
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
            }
        }
     }
     int q; cin >> q;
     while (q -- ) {
        int k; cin >> k;
        vector<int> b(k + 1);
        ll ans = 0, add = (ll)1e18;
        for (int i = 1; i <= k; i ++ ) cin >> b[i], ans += a[b[i]][2];
        do {
            for (int i = 0; i < (1 << k); i ++ ) {
                ll extra = 0, last = 1;
                for (int j = 1; j <= k; j ++ ) {
                    int st = a[b[j]][0], ed = a[b[j]][1];
                    if (i >> (j - 1) & 1) swap(st, ed);
                    extra += d[st][last];
                    last = ed;
                }
                extra += d[last][n];
                add = min(add, extra);
            }
        }while (next_permutation(b.begin() + 1, b.end()));
        cout << ans + add << endl;
     }
	 return;
}

        

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值