P1065 [NOIP2006 提高组] 作业调度方案

题目描述

我们现在要利用 m 台机器加工 n 个工件,每个工件都有 m 道工序,每道工序都在不同的指定的机器上完成。每个工件的每道工序都有指定的加工时间。

每个工件的每个工序称为一个操作,我们用记号 j-k 表示一个操作,其中 j 为 1 到 n 中的某个数字,为工件号;k 为 1 到 m 中的某个数字,为工序号,例如 2-4 表示第 2 个工件第 4 道工序的这个操作。在本题中,我们还给定对于各操作的一个安排顺序。

例如,当n=3,m=2 时,1-1,1-2,2-1,3-1,3-2,2-2 就是一个给定的安排顺序,即先安排第 1 个工件的第 1 个工序,再安排第 1 个工件的第 2 个工序,然后再安排第 2 个工件的第 1 个工序,等等。

一方面,每个操作的安排都要满足以下的两个约束条件。

  1. 对同一个工件,每道工序必须在它前面的工序完成后才能开始;

  2. 同一时刻每一台机器至多只能加工一个工件。

另一方面,在安排后面的操作时,不能改动前面已安排的操作的工作状态。

由于同一工件都是按工序的顺序安排的,因此,只按原顺序给出工件号,仍可得到同样的安排顺序,于是,在输入数据中,我们将这个安排顺序简写为 1 1 2 3 3 2

还要注意,“安排顺序”只要求按照给定的顺序安排每个操作。不一定是各机器上的实际操作顺序。在具体实施时,有可能排在后面的某个操作比前面的某个操作先完成。

例如,取 n=3,m=2,已知数据如下(机器号/加工时间):

工件号工序 1工序 2
111/31/32/22/2
221/21/22/52/5
332/22/21/41/4

则对于安排顺序 1 1 2 3 3 2,下图中的两个实施方案都是正确的。但所需要的总时间分别是 10 与 12。

方案 1,用时 10:

时间12345678910
机器 1 执行工序1-11-11-12-12-13-23-23-23-2
机器 2 执行工序3-13-11-21-22-22-22-22-22-2

方案 2,用时 12:

时间123456789101112
机器 1 执行工序1-11-11-12-12-13-23-23-23-2
机器 2 执行工序1-21-23-13-12-22-22-22-22-2

当一个操作插入到某台机器的某个空档时(机器上最后的尚未安排操作的部分也可以看作一个空档),可以靠前插入,也可以靠后或居中插入。为了使问题简单一些,我们约定:在保证约束条件 (1.)(2.) 的条件下,尽量靠前插入。并且,我们还约定,如果有多个空档可以插入,就在保证约束条件 (1.)(2.) 的条件下,插入到最前面的一个空档。于是,在这些约定下,上例中的方案一是正确的,而方案二是不正确的。

显然,在这些约定下,对于给定的安排顺序,符合该安排顺序的实施方案是唯一的,请你计算出该方案完成全部任务所需的总时间。

输入格式

第 1 行为两个正整数 m, n,用一个空格隔开, 其中 m(<20) 表示机器数,n(<20) 表示工件数。

第 2 行:m×n 个用空格隔开的数,为给定的安排顺序。

接下来的 2n 行,每行都是用空格隔开的 m 个正整数,每个数不超过 20。

其中前 n 行依次表示每个工件的每个工序所使用的机器号,第 1 个数为第 1 个工序的机器号,第 2 个数为第 2 个工序机器号,等等。

后 n 行依次表示每个工件的每个工序的加工时间。

可以保证,以上各数据都是正确的,不必检验。

输出格式

1 个正整数,为最少的加工时间。

输入输出样例

输入 #1

2 3
1 1 2 3 3 2
1 2 
1 2 
2 1
3 2 
2 5 
2 4

输出 #1

10
#include <iostream>
using namespace std;

int m, n;
int list[501];//记录每个工件的安排顺序
struct Information 
{
	int id;//在id台机器上加工
	int cost;//花费的时间
}a[21][21];//a[第几个工件][第几步]
int Max[21][100001];//Max[机器编号][时间]
int step[21] = { 0 };//每个工件加工到了第几步
int last_time[21] = { 0 };//上次在last_time[工件编号]时加工完成的
int ans = 0;

int main()
{
	cin >> m >> n;
	for (int i = 1; i <= m * n; i++) {
		cin >> list[i];
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++) {
			cin >> a[i][j].id;
		}
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++) {
			cin >> a[i][j].cost;
		}
	}

	for (int i = 1; i <= m * n; i++) {
		int now = list[i];
		step[now]++;
		int id = a[now][step[now]].id;
		int cost = a[now][step[now]].cost;
		int s = 0;
		
		for (int j = last_time[now] + 1;; j++) {
			//通过检查Max[id][j]的值来寻找一个连续的空闲时间段
			if (Max[id][j] == 0)s++;
			else s = 0;
			if (s == cost) {
				for (int k = j - cost + 1; k <= j; k++) {
					Max[id][k] = 1;
				}
				if (j > ans)ans = j;
				last_time[now] = j;
				break;
			}
		}
	}
	cout << ans << endl;


	return 0;
}

说明/提示

NOIP 2006 提高组 第三题

注意:强烈建议画图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值