机器学习任务的一般流程

目录

1 数据收集

2 数据预处理与特征工程

2.1 数据清理

1、缺失值的处理

2、离群点处理

3、噪声处理

2.2 数据集成

2.3 数据规约

2.4 数据变换

1.规范化处理:

2.离散化处理:

3.稀疏化处理:

3.模型的选择与训练

4.模型的评估与优化


处理机器学习问题,通常分为以下几步:

1 数据收集

        业界有一句非常著名的话:“数据决定了机器学习的上界,而模型和算法只是逼近这个上界。”由此可见,数据对于整个机器学习项目至关重要。
        通常,我们拿到一个具体的领域问题后,可以使用网上一些具有代表性的、大众经常会用到的公开数据集。相较于自己整理的数据集,显然大众的数据集更具有代表性,数据处理的结果也更容易得到大家的认可。此外,大众的数据集在数据过拟合、数据偏差、数值缺失等问题上也会处理的更好。但如果在网上找不到现成的数据,那我们只好收集原始数据,再去一步步进行加工、整理,这将是一个漫长的过程,需要我们足够细心。

得到数据集后应首先进行探索性数据分析,了解数据的分布情况。(以下为用pandas读取后的dataframe)

train.head(5) #显示前5行数据
train.tail(5) #显示后5行
train.columns #查看列名
train.info() #查看各字段的信息
train.shape #查看数据集行列分布,几行几列
train.describe() #查看数据的大体情况

2 数据预处理与特征工程

数据可能包含了大量的缺失值,可能包含大量的噪音,也可能因为人工录入错误导致有异常点存在,非常不利于算法模型的训练。

数据的质量,直接决定了模型的预测和泛化能力的好坏。它涉及很多因素,包括:准确性、完整性、一致性、时效性、可信性和解释性。

数据预处理的主要步骤分为:数据清理、数据集成、数据规约和数据变换。

2.1 数据清理

以下是一个简单的Python代码示例,用于清洗机器学习数据集中的缺失值、重复值和异常值。我们将使用pandas库,它在数据分析中非常常见。

# 导入所需的库
import pandas as pd
import numpy as np

# 假设你的数据集是CSV文件名为'data.csv'
# 请将'data.csv'替换为你的实际文件路径
data = pd.read_csv('data.csv')

### 数据清洗步骤:

# 1. 检查并处理缺失值(NaN)
# 使用 `isnull()` 函数检测缺失值
print("检查缺失值:")
null_values = data.isnull().sum()
print(null_values)

# 可以选择删除含有大量缺失值的列,或者填充缺失值(这里用mean填充,可根据实际情况选择其他方法)
data = data.dropna(thresh=len(data) * 0.5)  # 删除占比超过50%的行
data = data.fillna(data.mean())  # 用平均值填充数值型缺失值

# 2. 处理重复值
# 使用 `duplicated()` 函数查找重复行
print("\n检查重复值:")
duplicates = data.duplicated()
print("总共有{}个重复的行".format(duplicates.sum()))

# 删除所有重复行(如果你想保留第一次出现的数据,可以改为'duplicates=False')
data = data.drop_duplicates()

# 3. 数据类型转换与异常值处理
# 假设年龄(age)字段可能存在异常值(如负数或非常大的数字)
print("\n检查年龄(age)字段的异常值:")
age_series = data['age']
age_median = age_series.median()
age_iqr = age_series.quantile(0.75) - age_series.quantile(0.25)
print("年龄IQR:", age_iqr)

# 我们可以使用四分位数范围(IQR)来识别异常值
data = data[(data['age'] > age_series.quantile(0.25) - 1.5 * age_iqr) & (data['age'] < age_series.quantile(0.75) + 1.5 * age_iqr)]

# 这是一段基本的清洗流程,具体操作可能根据你的数据进行调整

这个代码片段提供了一个基础的框架,实际应用时可能需要根据你的数据集特点进行调整。如果你有特定的数据集结构或需要关注的问题,请提供更多的细节。
数据清理(data cleaning) 的主要思想是通过填补缺失值、光滑噪声数据,平滑或删除离群点,并解决数据的不一致性来“清理“数据。

1、缺失值的处理

针对这些缺失值的处理方法,主要是基于变量的分布特性和变量的重要性(信息量和预测能力)采用不同的方法。主要分为以下几种:

删除变量:若变量的缺失率较高(大于80%),覆盖率较低,且重要性较低,可以直接将变量删除。

定值填充:工程中常见用-9999进行替代

统计量填充:若缺失率较低(小于95%)且重要性较低,则根据数据分布的情况进行填充。对于数据符合均匀分布,用该变量的均值填补缺失,对于数据存在倾斜分布的情况,采用中位数进行填补。

插值法填充:包括随机插值,多重差补法,热平台插补,拉格朗日插值,牛顿插值等

模型填充:使用回归、贝叶斯、随机森林、决策树等模型对缺失数据进行预测。

哑变量填充:若变量是离散型,且不同值较少,可转换成哑变量,例如性别SEX变量,存在male,fameal,NA三个不同的值,可将该列转换成 IS_SEX_MALE, IS_SEX_FEMALE, IS_SEX_NA。若某个变量存在十几个不同的值,可根据每个值的频数,将频数较小的值归为一类’other’,降低维度。此做法可最大化保留变量的信息。

总结来看,楼主常用的做法是:先用pandas.isnull.sum()检测出变量的缺失比例,考虑删除或者填充,若需要填充的变量是连续型,一般采用均值法和随机差值进行填充,若变量是离散型,通常采用中位数或哑变量进行填充。

注意:若对变量进行分箱离散化,一般会将缺失值单独作为一个箱子(离散变量的一个值)

2、离群点处理

异常值是数据分布的常态,处于特定分布区域或范围之外的数据通常被定义为异常或噪声。
异常分为两种:“伪异常”,由于特定的业务运营动作产生,是正常反应业务的状态,而不是数据本身的异常;“真异常”,不是由于特定的业务运营动作产生,而是数据本身分布异常,即离群点。

主要有以下检测离群点的方法:

简单统计分析:根据箱线图、各分位点判断是否存在异常,例如pandas的describe函数可以快速发现异常值。

3σ原则:若数据存在正态分布,偏离均值的3σ之外. 通常定义P(|x-u|>3σ)<=0.003范围内的点为离群点。

基于绝对离差中位数(MAD):这是一种稳健对抗离群数据的距离值方法,采用计算各观测值与平均值的距离总和的方法。放大了离群值的影响。

基于距离:通过定义对象之间的临近性度量,根据距离判断异常对象是否远离其他对象,缺点是计算复杂度较高,不适用于大数据集和存在不同密度区域的数据集

基于密度:离群点的局部密度显著低于大部分近邻点,适用于非均匀的数据集

基于聚类:利用聚类算法,丢弃远离其他簇的小簇。

总结来看,在数据处理阶段将离群点作为影响数据质量的异常点考虑,而不是作为通常所说的异常检测目标点,因而楼主一般采用较为简单直观的方法,结合箱线图和MAD的统计方法判断变量的离群点。

具体的处理手段:

根据异常点的数量和影响,考虑是否将该条记录删除,信息损失多

若对数据做了log-scale 对数变换后消除了异常值,则此方法生效,且不损失信息

平均值或中位数替代异常点,简单高效,信息的损失较少

在训练树模型时,树模型对离群点的鲁棒性较高,无信息损失,不影响模型训练效果

3、噪声处理

噪声是变量的随机误差和方差,是观测点和真实点之间的误差,即obs = xε。通常的处理办法:对数据进行分箱操作,等频或等宽分箱,然后用每个箱的平均数,中位数或者边界值(不同数据分布,处理方法不同)代替箱中所有的数,起到平滑数据的作用。另外一种做法是,建立该变量和预测变量的回归模型,根据回归系数和预测变量,反解出自变量的近似值。

2.2 数据集成


数据分析任务多半涉及数据集成。数据集成将多个数据源中的数据结合成、存放在一个一致的数据存储,如数据仓库中。这些源可能包括多个数据库、数据方或一般文件。

1.实体识别问题:例如,数据分析者或计算机如何才能确信一个数 据库中的 customer_id 和另一个数据库中的 cust_number 指的是同一实体?通常,数据库和数据仓库 有元数据——关于数据的数据。这种元数据可以帮助避免模式集成中的错误。

2.冗余问题。一个属性是冗余的,如果它能由另一个表“导出”;如年薪。属性或 维命名的不一致也可能导致数据集中的冗余。用相关性检测冗余:数值型变量可计算相关系数矩阵,标称型变量可计算卡方检验。

3.数据值的冲突和处理:不同数据源,在统一合并时,保持规范化,去重。

数据集成通常涉及到将来自多个来源的数据合并到一个统一的数据集。下面是一个简单的例子,我们将演示如何使用pandas来合并两个CSV文件:

import pandas as pd

# 假设你有两个CSV文件('file1.csv' 和 'file2.csv'),它们都有相同的列结构
# 文件1和文件2的路径请替换为你的实际路径
file1 = pd.read_csv('file1.csv')
file2 = pd.read_csv('file2.csv')

### 数据集成方法:
# 1. 合并基于索引(如果两文件有相同的行索引)
if 'index_column' in file1.columns and 'index_column' in file2.columns:
    common_index = file1.set_index('index_column').index.intersection(file2.set_index('index_column').index)
    merged_data = file1.loc[common_index].append(file2.loc[common_index])
    print("仅基于索引合并:")
    print(merged_data)

# 2. 按照键(column_name)进行左连接
elif 'column_name' in file1.columns and 'column_name' in file2.columns:
    merged_data = pd.merge(file1, file2, on='column_name', how='left')  # 可以选择 'left', 'right', 'inner' 或 'outer'
    print("按'column_name'进行左连接:")
    print(merged_data)

# 3. 如果没有相同的列名,可以指定`keys`参数
elif 'key_column1' in file1.columns and 'key_column2' in file2.columns:
    merged_data = pd.merge(file1, file2, left_on='key_column1', right_on='key_column2', how='outer')
    print("按'key_column1'和'key_column2'进行外连接:")
    print(merged_data)

# 确保在合并后检查是否有重复值和缺失值,如之前所述
merged_data = merged_data.drop_duplicates().dropna()

这段代码示例是基本的合并方法,实际应用中可能需要根据你的需求进行调整。

2.3 数据规约


数据归约技术可以用来得到数据集的归约表示,它小得多,但仍接近地保持原数据的完整性。这样,在归约后的数据集上挖掘将更有效,并产生相同(或几乎相同)的分析结果。一般有如下策略:

1.维度规约

用于数据分析的数据可能包含数以百计的属性,其中大部分属性与挖掘任务不相关,是冗余的。维度归约通过删除不相关的属性,来减少数据量,并保证信息的损失最小。

属性子集选择:目标是找出最小属性集,使得数据类的概率分布尽可能地接近使用所有属性的原分布。在压缩 的属性集上挖掘还有其它的优点。它减少了出现在发现模式上的属性的数目,使得模式更易于理解。

逐步向前选择:该过程由空属性集开始,选择原属性集中最好的属性,并将它添加到该集合中。在其后的每一次迭代,将原属性集剩下的属性中的最好的属性添加到该集合中。

逐步向后删除:该过程由整个属性集开始。在每一步,删除掉尚在属性集中的最坏属性。

向前选择和向后删除的结合:向前选择和向后删除方法可以结合在一起,每一步选择一个最 好的属性,并在剩余属性中删除一个最坏的属性。

python scikit-learn 中的递归特征消除算法Recursive feature elimination (RFE),就是利用这样的思想进行特征子集筛选的,一般考虑建立SVM或回归模型。

单变量重要性:分析单变量和目标变量的相关性,删除预测能力较低的变量。这种方法不同于属性子集选择,通常从统计学和信息的角度去分析。

pearson相关系数和卡方检验,分析目标变量和单变量的相关性。

回归系数:训练线性回归或逻辑回归,提取每个变量的表决系数,进行重要性排序。

树模型的Gini指数:训练决策树模型,提取每个变量的重要度,即Gini指数进行排序。

Lasso正则化:训练回归模型时,加入L1正则化参数,将特征向量稀疏化。

IV指标:风控模型中,通常求解每个变量的IV值,来定义变量的重要度,一般将阀值设定在0.02以上。

以上提到的方法,没有讲解具体的理论知识和实现方法,需要同学们自己去熟悉掌握。楼主通常的做法是根据业务需求来定,如果基于业务的用户或商品特征,需要较多的解释性,考虑采用统计上的一些方法,如变量的分布曲线,直方图等,再计算相关性指标,最后去考虑一些模型方法。如果建模需要,则通常采用模型方法去筛选特征,如果用一些更为复杂的GBDT,DNN等模型,建议不做特征选择,而做特征交叉。

2.维度变换:

维度变换是将现有数据降低到更小的维度,尽量保证数据信息的完整性。楼主将介绍常用的几种有损失的维度变换方法,将大大地提高实践中建模的效率

主成分分析(PCA)和因子分析(FA):PCA通过空间映射的方式,将当前维度映射到更低的维度,使得每个变量在新空间的方差最大。FA则是找到当前特征向量的公因子(维度更小),用公因子的线性组合来描述当前的特征向量。

奇异值分解(SVD):SVD的降维可解释性较低,且计算量比PCA大,一般用在稀疏矩阵上降维,例如图片压缩,推荐系统。

聚类:将某一类具有相似性的特征聚到单个变量,从而大大降低维度。

线性组合:将多个变量做线性回归,根据每个变量的表决系数,赋予变量权重,可将该类变量根据权重组合成一个变量。

流行学习:流行学习中一些复杂的非线性方法,可参考skearn:LLE Example

假设我们有一个包含销售数据的DataFrame,包含产品、地区和销售额等信息,我们将进行一些基本的数据规约:

import pandas as pd
from sklearn.decomposition import PCA

# 假设你的数据集是'data.csv'
data = pd.read_csv('data.csv')

### 数据规约步骤:
# 1. 数据预处理(清理缺失值、异常值)
data = data.dropna()  # 删除所有含有缺失值的行
# ...(根据实际需求进行特征工程)

# 2. 分组并计算摘要信息
# 按产品对总销售额求和
sales_by_product = data.groupby('product')['sales'].sum()
print("按产品汇总销售额:")
print(sales_by_product)

# 3. 地区汇总
region_summary = data.groupby('region').agg({'sales': 'sum', 'product': 'count'})
print("\n按地区汇总销售数据:")
print(region_summary)

# 4. 使用PCA进行降维(示例,只保留前两个主成分)
pca = PCA(n_components=2)  # 降低到2个主成分
data_pca = pca.fit_transform(data[['product', 'region', 'sales']])  # 只考虑这些列
data_pca_df = pd.DataFrame(data_pca, columns=['PC1', 'PC2'])
print("\n将数据降维到两个主成分:")
print(data_pca_df)

这个例子仅示范了基础的数据规约,实际应用可能需要根据你的数据和问题来定制。例如,你可能需要更复杂的聚合(如平均值、百分位数等),或者使用其他降维技术(如t-SNE等)。

2.4 数据变换

数据转换(Data Transformation)通常涉及到调整数据格式、编码、归一化或标准化等步骤,以便用于机器学习模型。以下是一个简单的例子,使用pandas和sklearn库进行一些常见的数据转换:
数据变换包括对数据进行规范化,离散化,稀疏化处理,达到适用于挖掘的目的。

import pandas as pd
from sklearn.preprocessing import StandardScaler, LabelEncoder

# 假设你的数据集是'data.csv'
data = pd.read_csv('data.csv')

### 数据转换步骤:
# 1. 缺失值处理(这里用中位数填充)
data = data.fillna(data.median())

# 2. 类别变量的编码
categorical_columns = ['feature1', 'feature2']  # 添加你的类别特征列名
le = LabelEncoder()  # 初始化LabelEncoder
for col in categorical_columns:
    data[col] = le.fit_transform(data[col])  # 对类别列进行编码

# 3. 数值变量的标准化(对数值型数据进行均值为0,标准差为1的标准化)
numerical_columns = data.select_dtypes(include='number').columns.tolist()
scaler = StandardScaler()
data[numerical_columns] = scaler.fit_transform(data[numerical_columns])

# 4. 数据分割(假设最后一列是目标变量,其他为特征)
X = data.iloc[:, :-1]  # 特征
y = data.iloc[:, -1]  # 目标变量

# 如果有日期类型的数据需要转换,可以使用pandas的to_datetime函数
if 'date_column' in data.columns:
    data['date_column'] = pd.to_datetime(data['date_column'])

print("\n转换后的数据:")
print(data.head())

这个例子仅包含了基本的数据转换步骤,实际应用可能更复杂,例如需要进行特征选择、特征工程(如创建新特征),或者使用不同类型的预处理技术(如One-Hot编码、离散化等)。

1.规范化处理:

数据中不同特征的量纲可能不一致,数值间的差别可能很大,不进行处理可能会影响到数据分析的结果,因此,需要对数据按照一定比例进行缩放,使之落在一个特定的区域,便于进行综合分析。特别是基于距离的挖掘方法,聚类,KNN,SVM一定要做规范化处理。

最大 - 最小规范化:将数据映射到[0,1]区间,

Z-Score标准化:处理后的数据均值为0,方差为1,

Log变换:在时间序列数据中,对于数据量级相差较大的变量,通常做Log函数的变换, .

2.离散化处理:

数据离散化是指将连续的数据进行分段,使其变为一段段离散化的区间。分段的原则有基于等距离、等频率或优化的方法。数据离散化的原因主要有以下几点:

模型需要:比如决策树、朴素贝叶斯等算法,都是基于离散型的数据展开的。如果要使用该类算法,必须将离散型的数据进行。有效的离散化能减小算法的时间和空间开销,提高系统对样本的分类聚类能力和抗噪声能力。

离散化的特征相对于连续型特征更易理解。

可以有效的克服数据中隐藏的缺陷,使模型结果更加稳定。

等频法:使得每个箱中的样本数量相等,例如总样本n=100,分成k=5个箱,则分箱原则是保证落入每个箱的样本量=20。

等宽法:使得属性的箱宽度相等,例如年龄变量(0-100之间),可分成 [0,20],[20,40],[40,60],[60,80],[80,100]五个等宽的箱。

聚类法:根据聚类出来的簇,每个簇中的数据为一个箱,簇的数量模型给定。

3.稀疏化处理:

针对离散型且标称变量,无法进行有序的LabelEncoder时,通常考虑将变量做0,1哑变量的稀疏化处理,例如动物类型变量中含有猫,狗,猪,羊四个不同值,将该变量转换成is_猪,is_猫,is_狗,is_羊四个哑变量。若是变量的不同值较多,则根据频数,将出现次数较少的值统一归为一类’rare’。稀疏化处理既有利于模型快速收敛,又能提升模型的抗噪能力。

3.模型的选择与训练


首先我们要对处理好的数据进行分析,判断训练数据有没有类标,若是有类标则应该考虑监督学习的模型,否则可以划分为非监督学习问题。

其次分析问题的类型是属于分类问题还是回归问题,当我们确定好问题的类型之后再去选择具体的模型。在模型的实际选择时,通常会考虑尝试不同的模型对数据进行训练,然后比较输出的结果,选择最佳的那个。

此外,我们还会考虑到数据集的大小。若是数据集样本较少,训练的时间较短,通常考虑朴素贝叶斯等一些轻量级的算法,否则的话就要考虑SVM等一些重量级算法。

4.模型的评估与优化


我们可以选择查准率、查全率、AUC指标表现更好的模型;
还可以通过的交叉验证法用验证集来评估模型性能的好坏;
当然,也可以针对一种模型采用多种不同的方法,每种方法给予不同的权重值,来对该模型进行综合“评分”。

在模型评估的过程中,我们可以判断模型的“过拟合”和“欠拟合”。若是存在数据过度拟合的现象,说明我们可能在训练过程中把噪声也当作了数据的一般特征,可以通过增大训练集的比例或是正则化的方法来解决过拟合的问题;

若是存在数据拟合不到位的情况,说明我们数据训练的不到位,未能提取出数据的一般特征,要通过增加多项式维度、减少正则化参数等方法来解决欠拟合问题。

最后,为了使模型的训练效果更优,我们还要对所选的模型进行调参,这就需要我们对模型的实现原理有更深的理解。

此外,在实际项目中,我们还会对机器学习的模型进行模型的融合,根据模型的重要程度对每个模型设置不同的权重等,以调高模型的准确率。

关于模型的选择和预处理这一块,我们可以参阅sklearn官方手册:https://scikit-learn.org。

https://blog.csdn.net/2301_80196575?spm=1000.2115.3001.5343icon-default.png?t=N7T8https://blog.csdn.net/2301_80196575?spm=1000.2115.3001.5343

  • 17
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值