数学实验第三版(主编:李继成 赵小艳)课后练习答案(七)(1)(2)

目录

实验七:随机变量数据模拟

练习一

练习二


实验七:随机变量数据模拟

练习一

1.产生在[1,3]上服从均匀分布的20个随机数,并绘图观察。

clc;clear;
sjs=unifrnd(1,3,1,20);
t=sort(sjs);
yt=1/(max(t)-min(t));
plot(t,yt*ones(size(t)));
x=1:0.01:3;
y=0.5;
hold on
plot(x,y*ones(size(x)));

2. 随机生成服从数学期望为2,标准差为1的200,2000个正态分布的样本随机数,并画图观察.

clc;clear;
t=normrnd(2,1,1,200);%可以在这里改动数据,将200改为2000再次进行实验
t=sort(t);
averge=mean(t);
std=sqrt(var(t));
yt=1/(sqrt(2*pi)*std)*exp(-(t-averge).^2/2*std^2);
plot(t,yt)
x=0:0.01:5;
y=1/(sqrt(2*pi)*1)*exp(-(x-2).^2/2*1^2);
hold on
plot(x,y);

练习二

1. 随机变量X~P(3).

(1)试生成21个随机数(3行7列)

clc;clear;%泊松分布
t=poissrnd(3,3,7)

t =

     1     2     2     8     4     1     4

     3     1     0     2     3     5     4

     3     2     5     2     2     1     2

(2)若已知分布函数F(x)=0.45,求x;

x=poissinv(0.45,3)

x=3

(3画出X的分布律和分布函数图形。

i=1:100;
p=poisspdf(i,3);
px=poisscdf(i,3);
figure(1)
plot(i,p,'.');
figure(2)
plot(i,px,'+');


2. 设随机变量X~U[2,6],求概率P{2.11<X<2.22},并画出随机变量X的分布函数和概率密形.

clc;clear;%均匀分布
p=1/(6-2)*(2.22-2.11);
x=2:0.01:6;
pc=unifcdf(x,2,6);
figure(1);
plot(x,pc);
p=unifpdf(x,2,6);
figure(2); 
plot(x,p);

p =0.0275

clc;clear;%指数分布
p=expcdf(300,3000)

3. 设某电子元件厂生产的电子元件的寿命(单位:h)X~exp(3000),该厂规定寿命低于300的元件可以退换,求退换的产品占总产品的比例。

p =

    0.0952

4. 公共汽车车门的高度是按成年男子与车门框碰头的概率在0.01以下的标准设计的。根据统计资料,成年男子的身高X服从均值为168cm,方差为7cm2 的正态分布,那么车门的高度应该至少设计为多少?

clc;clear;%正态分布
x=norminv(0.99,168,sqrt(7))

x =

  174.1549cm

5. 利用MATLAB 软件生成服从二项分布的随机数,验证泊松定理。

clc;clear;%验证泊松定律
x=binornd(100,0.02,1,1000);
x=sort(x);m=[];
for i=0:max(x)
a=(max(find(x==i))min(find(x==i))+1)/1000;
    m=[m,a];
end
m1=plot(0:length(m)-1,m);
hold on
plot(0:length(m)-1,m,'.');
x1=0:length(m)-1;y1=poisspdf(x1,2);
hold on
plot(x1,y1,'.');
hold on
m2=plot(x1,y1);
legend([m1,m2],'模拟二项分布','理论泊松分布');

注解:先产生一系列二项分布的样本数据,再计算每个数据在样本中所占的概率。之后计算泊松分布下这些数据所对应的概率,将两者对比即可得知泊松定律的正确性。

推荐下一篇文章:数学实验第三版(主编:李继成 赵小艳)课后练习答案(七)(3)(4)(5)icon-default.png?t=N7T8https://blog.csdn.net/2301_80199493/article/details/136035863?spm=1001.2014.3001.5501

本文由作者自创,由于时间原因,难免出现错误,还请大家多多指正批评。创作不易,希望一键三连哦!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

C.L.L

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值