- 博客(20)
- 收藏
- 关注
原创 南京邮电大学数学实验A 作业5 函数与方程 答案 | 《MATLAB数学实验》第三版 第四章 课后习题答案
南京邮电大学数学实验A 作业5 函数与方程 答案 | 《MATLAB数学实验》第三版 第四章 课后习题答案
2024-04-22 10:39:53 1964
原创 南京邮电大学数学实验A 作业4 符号计算 答案 | 《MATLAB数学实验》第三版 第七章 课后习题答案
南京邮电大学数学实验A 作业4 符号计算 答案 | 《MATLAB数学实验》第三版 第七章 课后习题答案
2024-04-22 10:33:40 1469
原创 南京邮电大学数学实验A 作业3 编程与作图 答案 | 《MATLAB数学实验》第三版 第二章 课后习题答案
南京邮电大学数学实验A 作业3 编程与作图 答案 | 《MATLAB数学实验》第三版 第二章 课后习题答案
2024-04-22 10:29:25 1292
原创 南京邮电大学数学实验A 作业2 矩阵代数 答案 | 《MATLAB数学实验》第三版 第三章 课后习题答案
南京邮电大学数学实验A 作业2 矩阵代数 答案 | 《MATLAB数学实验》第三版 第三章 课后习题答案。 若要获得更好的阅读体验,请前往 链接。设a=(1, 2, 3), b=(2, 4, 3), 分别计算a./b, a. \b, a/b, a \b,分析结果的意义.答:a./b: a中的每一个元素除以b中的对应元素a.\b: b中的每一个元素除以a中的对应位置的元素a/b: a左除b,即矩阵方程ax=b的解a\b: a右除b,即矩阵方程Xa=b的解输出:用矩阵除法解下列线性方程组,判断解的意义,
2024-04-22 10:17:52 1210
原创 南京邮电大学数学实验A 作业1 Matlab基础 答案 | 《MATLAB数学实验》第三版 第一章 课后习题答案
南京邮电大学数学实验A 作业1 Matlab基础 答案 | 《MATLAB数学实验》第三版 第一章 课后习题答案
2024-04-19 10:51:17 1592
原创 南京邮电大学数学实验A答案 | 《MATLAB数学实验》第三版课后习题答案
这个资源库的建立初衷是为了帮助南京邮电大学的同学们在学习过程中有一个参考的依据,减少一些无端浪费的时间。同时,其他使用《MATLAB数学实验》作为教材的同学们也可以利用这个平台来丰富自己的学习资源。本仓库收集了2024年我在学习《数学实验A》课程期间完成的作业。课程使用的教材为《MATLAB数学实验》第三版,作者为胡良剑和孙晓君教授。让我们共同努力,维护一个诚实、尊重和鼓励创新的学术环境。
2024-04-19 08:44:55 2030
原创 数学建模 书面大作业 存贮模型
设生产速率为常数 k,销售速率为常数 r,k>r,在每个生产周期T内,开始的一段时间(为了建模方便,假设生产量和销售量的变化都是连续的,生产周期T可以不是整数。)只销售不生产,画出存贮量 q(t) 的图形。停止生产后,库存数逐渐减少,直至库存数变为0,此时一个周期结束。,以平均每天总费用最小为目标确定最优生产周期。所以,这段周期内的总费用为:总存储费用+生产准备费。对(4)式除以周期T,求平均每天的费用。,生产周期无限长,几乎无法产生贮存量。式子(6)即为我们要求的最佳生产周期。的速率增长,达到最大值。
2024-03-23 21:31:38 1266 1
原创 ESLint: ‘xxxx‘ is not defined. (no-undef)
当React/Vite 使用原生自带的测试功能时测试React应用时,若启用了ESLint进行检查,就会有下列报错:ESLint: 'test' is not defined. (no-undef)
2024-03-09 12:23:46 894 1
翻译 【Python】解决No module named ‘mpl_toolkits.basemap‘问题
请参考官方 matplotlib/basemap 的Github仓库的Readme:GitHub - matplotlib/basemap: Plot on map projections (with coastlines and political boundaries) using matplotlib以下是翻译。 在地图投影上绘制(带有海岸线和政治边界)使用matplotlib。基本要求如下:Python 2.6(或更高版本)matplotlibnumpypyprojpyshp可选要求包括:(如果你
2024-02-02 22:13:48 805
原创 强化学习基础-时序差分算法
书接上一节动态规划算法适用于已知马尔可夫决策过程的情况,可以直接解出最优价值或策略。但在大部分情况下,马尔可夫决策过程的状态转移概率是未知的,这时就需要使用无模型的强化学习算法。无模型的强化学习算法不需要事先知道环境的奖励函数和状态转移函数,而是通过与环境交互采样数据来学习。模型无关的强化学习直接从经验中学习值(value)和策略 (policy),而无需构建马尔可夫决策过程模型(MDP)。关键步骤:(1)估计值函数;(2)优化策略。
2023-12-30 12:17:15 892 1
原创 南京邮电大学 离散数学 23年第一学期考试回忆
南京邮电大学 离散数学 23年第一学期考试回忆。20分填空题+80分大题用的是橙色封面的《离散数学》。
2023-12-27 17:03:33 1024 2
原创 记载一次美赛退赛退款流程
记载了一次美赛退赛并成功退款的经过,里面附有模板信件。Keyword: 美国大学生数学建模竞赛 MCM / ICM 退赛 退款
2023-12-25 23:11:53 1987 10
原创 双系统Linux下Windows的NTFS盘只读解决办法
这是因为Windows可能没有完全关闭,应该进入Windows系统下,关闭快速启动。具体方法请自行百度。再次执行之前的代码,运行成功,只读保护就已经取消了,现在可以对盘内的文件进行修改了。但是在没有开启“快速启动”的方法下,可能仍然会遇到这种情况,比如我。看到红框标出的位置,一个是设备,一个是挂载点,输入代码。这时有可能会提示已经被挂载或者有应用程序正在使用它。首先尝试修复文件系统。
2023-11-10 16:39:24 646 1
原创 强化学习基础-动态规划算法
动态规划(dynamic programming)能够高效解决一些经典问题,例如背包问题和最短路径规划。动态规划的基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到目标问题的解。动态规划会保存已解决的子问题的答案,在求解目标问题的过程中,需要这些子问题答案时就可以直接利用,避免重复计算。
2023-10-29 13:31:36 171
原创 强化学习基础-马尔可夫决策过程
马尔可夫决策过程(Markov decision process,MDP)是强化学习的重要概念。强化学习中的环境一般就是一个马尔可夫决策过程。与多臂老虎机问题不同,马尔可夫决策过程包含状态信息以及状态之间的转移机制。
2023-10-29 13:24:31 208
原创 强化学习初探
强化学习是机器通过与环境交互来实现目标的一种计算方法。在每一轮交互中,智能体(agent)感知环境状态,做出动作决策,并将动作作用于环境中。环境根据智能体的动作产生即时奖励信号,并改变状态。智能体通过感知新的环境状态,不断迭代交互,以最大化累积奖励的期望。与有监督学习不同,强化学习中的智能体可以感知环境信息并直接改变环境。
2023-10-29 13:10:38 88
原创 Ubuntu 20.04 LTS安装老版本强化学习环境 gym0.19.0 记录
入门机器学习的第一只拦路虎就是配置环境,一些经典教材和教程的上的那些代码都是在几年前写作的,然后呢,这些过时的代码也就相应需要配置那些环境。本文在Ubuntu 20.04 LTS环境下安装并配置了gym 0.19.0环境,使得一些函数如env.seed()得以使用。
2023-10-18 19:23:03 960 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人