一、思路:
回溯法,这个题就很符合回溯法的思路,我们基于深度优先搜索,从左向右遍历,每次都把元素放入vector<int>向量中,然后接着向左、右子树分别搜索,最后遇到n == targetSum时,我们直接放进提供的vector<vector<int>>中去。重点是:在左右子树搜索完后,一定要回溯到上一状态,即尾元素删除!
二、代码实现
第一版:
class Solution {
public:
//思路:回溯法,每次都往里放,如果不对就覆盖,全局变量来记录位置
int index = 0;
vector<int> vv;
void findAll(TreeNode* root,int targetSum,vector<vector<int>>& v,int n,int level){
if(vv.size() < level){
vv.push_back(root->val);
}else{
vv[level-1] = root->val;
}
if(root->left == NULL && root->right == NULL){
if(n == targetSum){
if(vv.size() > level){
vv.erase(vv.begin()+level,vv.end());
}
v.push_back(vv);
}
return;
}
if(root->left != NULL)
findAll(root->left,targetSum,v,n + root->left->val,level +1);
if(root->right != NULL)
findAll(root->right,targetSum,v,n + root->right->val,level + 1);
}
vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
vector<vector<int>> v1;
if(root == NULL) return v1;
findAll(root,targetSum,v1,root->val,1);
return v1;
}
};
我这个代码写的十分笨重,这是因为我不会vector这个类中的删除队尾元素的操作(
优化:(官方题解)
class Solution {
public:
vector<vector<int>> ret;
vector<int> path;
void dfs(TreeNode* root, int targetSum) {
if (root == nullptr) {
return;
}
path.emplace_back(root->val);
targetSum -= root->val;
if (root->left == nullptr && root->right == nullptr && targetSum == 0) {
ret.emplace_back(path);
}
dfs(root->left, targetSum);
dfs(root->right, targetSum);
path.pop_back();
}
vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
dfs(root, targetSum);
return ret;
}
};
总结:
1.vector向量的删除操作,pop_back()
2.做这种找和为定值的题,不一定非要从0开始做加法,也可以从目标值开始,对每个节点做减法,以==0为判断条件