一棵树判断是否为完全二叉树的板子

#include<bits/stdc++.h>
using namespace std;
const int N = 30;
struct tree {
    int v, l, r;
}p[N];
int n;
bool st[N];
int k_max;
int last;
void init() {
    for (int i = 0;i <= N;i++) {
        p[i].l = p[i].r = -1;
    }
}
void dfs(int root, int k) {
    //cout << k << endl;
    if (k > k_max) {
        k_max = k;
        last = root;
    }
    if (p[root].l != -1) {
        dfs(p[root].l, 2 * k);
    }
    if (p[root].r != -1) {
        dfs(p[root].r, 2 * k + 1);
    }

}
int main()
{
    
    ios::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);
    cin >> n;
    init();
    memset(st, false, sizeof(st));

    for (int i = 0;i < n;i++) {
        string s1, s2;
        cin >> s1 >> s2;
        p[i].v = i - 1;
        if (s1 != "-") {
            int a = stoi(s1);
            
            st[a] = true;
            p[i].l = a;
        }
        if (s2 != "-") {
            int b = stoi(s2);
            
            st[b] = true;
            p[i].r = b;
        }

    }
    int root = 0;
   while(st[root]){
       root++;
   }
    
    dfs(root, 1);
    if (k_max > n) {
        cout << "NO " << root;
    }
    else {
        cout << "YES " << last;
    }

}

例题:

给定一个树,请你判断它是否是完全二叉树。

输入格式

第一行包含整数 NN,表示树的结点个数。

树的结点编号为 0∼N−10∼N−1。

接下来 NN 行,每行对应一个结点,并给出该结点的左右子结点的编号,如果某个子结点不存在,则用 - 代替。

输出格式

如果是完全二叉树,则输出 YES 以及最后一个结点的编号。

如果不是,则输出 NO 以及根结点的编号。

数据范围

1≤N≤201≤N≤20

输入样例1:
9
7 8
- -
- -
- -
0 1
2 3
4 5
- -
- -
输出样例1:
YES 8
输入样例2:
8
- -
4 5
0 6
- -
2 3
- 7
- -
- -
输出样例2:
NO 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值